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1. Introduction

The Resonance Chiral TheoryXR) is a consistent extension of the Chiral Perturbation The-
ory (ChPT) to the region of energies near 1 GeV by explicitodtiction of the resonance fields
and exploiting the idea of resonance saturation [1]. Onéefidvantages of they{ Lagrangian
at leading order (LO) (which we essentially use in our apghdas that, having a good predictive
power, it contains very few free parameters compared witother phenomenological models.

The fields of R(T, which correspond to meson resonances, are the Mygerrow states with
equal masses within the multiplet. The mass splitting abiwas were worked-out in a consis-
tent way forJ°¢ = 1-—,2+F 1++ 17— 0~ nonets [2]. In the light scalar sectal’€ = 07 ) the
deviation of mass matrix for physical states from its lakgdimit is large. There are also other
indications that the&’(1/N;) corrections are very important for the light scalar meséis.the ad-
vances in the understanding the scalar mesons we refer totresponding section in the Particle
Data Review [3] and the Proceedings of the recent Workshdjraied to the subject [4].

There were numerous attempts to describe the dynamics dfgthtest scalar mesons —
ap(980) (1® =17), fo(980) andfy(600) = o (1¢ = 07) — by means of chiral theories, e.g. [5—7].
In Ref. [5], for instance, a decade ago the light scalars weceessfully united into the nonet and
the subsequent symmetry relations were studied. The amasioin of scalar sector i)/ usually
avoided the explicit assignments for all of the multipletmiers.

The technical work-outs from the)R for the radiative decays with the scalar mesons can
be found e.g. in Ref. [6]. The general features of the appraae sketched in Section 2. In
Section 3 we pay attention to the important issues like rexhofvthe scalar tadpole terms of the
RxT Lagrangian and) (andn’) inclusion in RT.

The estimates of the model parameters in Ref. [6] were chaig in a naive way (see [8]),
however the interaction pattern and dynamic details rersalidl and easily allow for the other
ways of parameter extraction. Improvements on this way wetiated in Ref. [9] and this paper
is aimed to this analysis as well. Section 4 is devoted to teefithe invariant mass distributions
in the radiative decays of thg(1020 meson: ¢ — (yag —)ymn and @ — (yfo/o —)ymm. For
the extraction of the mixing parameter and the couplings nwed use the model-independent
information on the pole position af [10], pole position offy(980) due to Ref. [11] and information
on theap(980) parameters from Ref. [12]. Brief conclusions are drawn icti®a 5.

2. Scalar mesons in BT

The scalar resonances below 1 Ge¥, (o(980) anday(980)) have important consequences
for the low-energy hadronic interactions (e.g. they ctuoié to ChPT LECs in ordef(p?)). If
one does not use any special (non-perturbative) techntquaacount for corrections to the leading
order in /N, then to be consistent with the physics one has to introdueedsulting effects
explicitly in the RyT Lagrangian. One may conclude that the lakgesounting has to be somewhat
relaxed in favor of effects peculiar for the light scalatsth& same time the chiral symmetry has to
be preserved. With the notation of Refs. [1, 2] the relevagrangian reads

M2

> %—i—ﬁm, (2.1)

1
Lscalar = 5<DASDA S—M3S) +e5 (S x: ) + ke (X ) —
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Lt = ca (S WU) +Cm(SX). (2.2)
Scalar octe® and singlel, fields are related to the physical degrees of freedom asafsilo

a0(980) =S,
f0(980) = cosb — S sind, (2.3)
0 =% sinf + S coso.

HereS; is the isospin-oneSg is the isospin-zero neutral members of the flavor octet. dlaee
indications for theo, fp(980) andag(980) mesons to be members of one multiplet [5, 13].

For the attempts to work out the mass splitting for lightestlar mesons from the kinetic
and mass part of Lagrangian (2.1) we refer to [2, 5]. In theenirpaper we assume that the
values ofe;, k> andyS are implicitly tuned in such a way, that the mass eigenvataesespond
to the observed poles. In principle, the mixing anflies determined by the mass diagonalization,
however it also affects the interaction pattern of the ptalsstates. Within the scope of the paper
we fix the 8 from fit to decay distributions.

In the interaction Lagrangian (2.2) the simplificatiQnyS= Cmgd (S’Ct + S)/\/ﬁ) is assumed.
In notation of Ref. [1] it means that, g = cm,d/\/ﬁ in the largeNc limit. The coupling constants
cq andcy, have to be fixed from the measured decays. We use ttaliative decay distributions
for that purpose below in Section 4.

3. Scalar tadpoles)) meson and pseudoscalar decay constants Ry T

The pseudoscalar meson decay condfangiceives leading corrections at ordefp*) in ChPT
due to the low energy constand. The Ry T framework at LO has effectively the same chiral order.
It leads to the same corrections to the decay constants, afenremoves the scalar tadpole term
.Zéad = 2cm (Sx) and use the hypothesis of resonance saturation [14].

Let @3 = ng be the octet membegy = ng be the singlet state, ang) = \/2/—3 diag1,1,1).
Then the pseudoscalar nonet iy Rreadsu = exp(ﬁ zﬁzo%‘;‘;>, where f, had received cor-
rections: f123 # fas67 # fg # F due toSU(3) flavor breaking andfy # fg # F due to nonet
symmetry breaking and topological effectdbfl) axial anomaly. The singlet field also obtains an
extra contribution to mass duelt(1) axial anomaly. Translation of thig constants into those for
physical fields is done in the two-angle mixing scheme, fanéew see [15],

(0132 5)In(P) (025N (P) ) _ - focosth —fosindy) = -
<<0’J§’:(O)W(p)> (0’J§,S(O)lr)’(p)>> G ( fgsinBg foCOSGO) =iv2pt- G0

For the pseudoscalar nonet in physical basis one gets

i Tio AsKa + AsKs + AgKg + A7K7 1 ~1( N
u=exp|— + +— (Ag Ap)f 3.2
p(ﬁ [ﬁfn V2 vz e o) (n’ (82

{ N8 = saga—gyy [ €0S6o + N’ Sin6) { N = Ngcosbs — NosinGy

. : 3.3
M0 = cogee gy |11 SiN0s + N’ cosBe], n’ = ngsinég + nocosbo. (33)
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Figure 1: “Best fit: x2/d.o.f.(tot) = 1.47, ¢y = 932, cm = 4613, My, = 115033, M¢, = 986.110%,
Mo = 504232, 6 = 36° + 2° (errors from MINOS only). Data: [19, 20].

The mixing angles are determined [16, 17] from experimend. Udk6; = —9.2° £1.7° and g =
—21.2° +1.6° [16], which correspond tdg = (1.26+ 0.04) f; and fo = (1.17+0.03) f;,.
In order to make the effective lagrangians read simpler ocag apply the following notation

Cq \/_00398 60) (f_](.) COSBO_f_]é\/éSinQS>, C{q = m( \/_C0598—|— Sln90>

=__fn (2 1 G ; frr 1 1
Cs = V3cos6s ) (fox/icosecﬁ— e Sln98> v G = Gote (fs cosBg foﬁsme()) ,
Then the pseudoscalar nonet can be written as
n°+Cq\;7§+C{1r]’ T['+ ;_ZKJ"
i
— —10+Cqn+Cyn’ f
u=ex q ko . 3.4
P \/éfr( le'_ f\/é_o f K ( )
< 7K —Can+Can’

4. The ¢(1020 radiative decay fits

The dominant decay channels of the scalar mesons are knowevtorr, 7P for fo(980)
and o meson, andt®n for ag(980) meson. Much experimental attention has been paid so far
to the radiative decay of the meson: (1020 — yap — yrn [18, 19] and@(1020) — yfp —
yrtit[20]. Various models (e.g. [6, 7]) have been proposed tori@sthese decays. In our previous
consideration [9] we performed the separate ity and ) for the mass-parameters of scalar
mesons and the ang® while 4cqc, = F2 andcg = Cn, relations of Ref. [21] were imposed. The
o meson contribution was not taken into account and the dataspeith my; > 700 MeV were
fitted. We ended up wittx?/dof = 2.05(r°m®), and x?/dof = 3.32(rm) in a fit to combined
KLOE and Novosibirsk data.

Let Ms = Ms—i/2 T be the complex pole of the amplitude. We define the scalar meso
propagator (see discussion e.g. in [22]) as

Dél(pz) = p’— De(l\7|§+ iMs FStot(Mé)) +iv/p? I:Sﬁtot(pz)a (4.1)
with the Flatté-modified [23] widths
|:fo, a,tot(pz) I cramr(pz) + ng, o—kK( pz)a (4.2)
r

Fao,tot(P?) = ap—10n (P°)+ Fao_m(( ).

4
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Table 1: MINUIT fit results. Shown errors are due to MINOS. The fixeduhpalues are marked by asterisk.
Couplings and masses are given in MeV.

x?/dof
Fit Cqg Cm Ma, Mg, Mg ?] T mn tot.
A | 462° 462" | 1030+7 9798707 — [21°41°] 295 473 —
B | 462° 462 | 1030+7 9790705 441732 | 21°41°| 278 473 —
C | 68+4 27+£3| 985 100T — | 2+2°[ 1425 1293 127
D | 131713 7371 | 985 1001 — | 23+1°| 625 248 515
E | 15875 6772 | 985 100% 441 | 30°+1° | 412 330 377
F | 937 4673 | 115035 9861°0% 5047237 [ 36°+2° | 1.32 207 147

These analytic functions of (compleg§ (continued below the thresholds througi"fo2 JA—me =
i\/|p?/4—mé|) are given in Appendix A. One should notice that the exacpagator is of course
different from (4.1). Thus the proper positions of the amoplé polesMs, do not coincide with the
zeros ofD~1(p?) defined by (4.1), in other word®~1(MZ2) # 0. Nevertheless, it is of interest to
investigate how the form (4.1) reproduces the data. We @smtbrmation on the poles from [10 —
12] and perform the following fits to the(1020 radiative decay spectra of Refs. [19, 20]:

A, B fixed: cg = cn=F /2~ 46.2 MeV [21]; (cf. Ref. [9])
fitted (A): Mg, to 7 spectrumMy,, 8 to m°m° spectrummy; > 700 MeV (separate fits);
fitted (B): My, to 11 spectrumMy,, Mg, 6 to °1i° spectrum (separate fits);

C-E fixed (C, D):Mg, = (985+ 10) —i (50+17) [12], M¢, = 1001—i 16 [11];
fixed (E):Mg, [12], My, [11], Mg = 44173% — i 27273, [10]
fitted: cg, Cm, 0 to 77 and °711° spectra (simultaneous fith,;; > 700 MeV in C;

E, F fitted:Ma,, My,, (@ndMg in F), ¢4, G, O to 1 and 71 spectra (simultaneous fit).

For (1020 — yap — yrin we use onlyn — yy data sample of Ref. [18] and exclude the two
rightmost points from fit. The results are shown in Table 1e Bbst fit includings meson is Fit F,

it is illustrated in Fig. 1. For Fits C, D, E we employed (4 \}ile for Fits A, B and F we assumed
Ms ~ Ms in (4.1) and employed

Ds(p?) = p? —MZ+MsM(Fs 1ot (M3)) +iv/P? s 1ot (PP). (4.3)

5. Conclusions

The current results are the good illustration of the modethirery. There are important
theoretical issues in the scalar sector gfIR Scalar tadpoles and their relevance for the corrections
to pseudoscalar meson decay constants and problem oftemisigass splitting for resonances are
among them. It was also not widely known that the accounttfent— n’ mixing at leading order
in RT requires the two-angle scheme in the singlet-octet basis.

We have performed several fits to tp€l020) radiative decay spectra [19, 20] in order to fix
the RYT parameters in the scalar sector. It is observed, that thktyjof the fit strongly depends
on the form used for the scalar propagator. We used the imfiiom on the pole positions in
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order to pin down the masses of scalars in the fit and concltidgdhis way seems problematic
within the currently used Flatté-like framework. Our besgult is the combined Fit F, in whiah
meson contribution is accounted for. It covers the full eof the invariant masses and has total
x2/d.o.f.=147.

Appropriate and numerically optimal way to fix the model paeters is still to be developed.
The above consideration gives a strong motivation for tindgaéu improvement of the model.
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A. Model details for the scalar meson propagators

Here we list the reference formulae (see also [9]). The mounerdependent widths read

5 31 [p2 G, (P?)
rf07oﬁrm,KK(p2) = 52—p2 %—miK %, (A.2)

. 1 [(pP+m2—mp)? Gaorm (P?)
raoﬂrm(pz):—\/ 47;2 K _m%%a

. 1 [p2 G2 kk (P?)
k(8 — 20/ % i S

It is assumed that/f(p?) = &A9(F(P)/2, /[F(p?)] if necessary (below the two-kaon threshold).
In the Ry T formalism the effective couplings for the scalars are matm@&-dependent:
Gy, okk (P?) = 1/2 (8o, ok (M& — P?/2) + Gty, oKk ) » (A.2)
Gy, amT(pZ) =1/ frzr (@fo,onﬂ(mzz-r_ p2/2) + 9o, O'TlT[) )
Gaokk (P°) = 1/Z (Gaok (M — P*/2) + Gagkc ) ,
Gaom](pz) =1/ frzr (garm (m% + m?-(— pz)/2+ garm) .

The Lagrangian parameters enter these formulae via

Jakk = —V2CmMg, Jom = —2CmMe(V/2 cosh + 2 sinb) //3,
Garn = —2V2CqCmN, Jokk = —CmM& (—V/2 cos8 + 4 sin@) /v/3,
Gakk = V2cq, o = 2Ca(V2cosd + 2 sind) /V/3,

garm = 2\/§chd Jokk = Cd(—\/é COS@—|—4Sin9)/\/§.
Ot = —2CmMA(2 cosf — /2 sinB) /'3,

Jikk = —CmMg (4 COSH +V/2sinB)/V/3,
Gt = 2C4(2c0s0 — V2 sinB) /'3,
Gkk = Ca(4c0s0 4 V2sinB)/V/3,
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