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1. Introduction

Virtually all present-day computer systems, from pers@oahputers to the largest supercom-
puters, implement the IEEE 64-bit floating-point arithroetiandard, which provides 53 mantissa
bits, or approximately 16 decimal digit accuracy. For magtrstific applications, 64-bit arithmetic
is more than sufficient, but for a rapidly expanding body gblayations, it is not. In these appli-
cations, portions of the code typically involve numerigadkensitive calculations, which produce
results of questionable accuracy using conventional ragtft. These inaccurate results may in
turn induce other errors, such as taking the wrong path imditional branch.

Exacerbating these difficulties is the proliferation ofykrge-scale highly parallel computer
systems, as as exemplified by the Top500 list {gge//www.top500.0rg ). One inescapable
conseguence of the greatly increased scale of these daaglés that numerical anomalies which
heretofore have been minor nuisances are now much morg likdlave significant impact. At
the same time, the majority of persons performing these atetipns are not experts in numerical
analysis, and thus are more likely to be unaware of the patemimerical difficulties that may
exist. Thus, while some may argue that numerically semsit@iculations can be remedied by
using different algorithms or coding techniques, in pit is usually easier, cheaper and more
reliable to employ high-precision arithmetic to overcornern.

One concrete illustration of these difficulties is providadthe following example. Consider
the very simple 1-D differential equatiori(x) = — f (x) for some functionf (x). Discretization of
this system immediately leads to the matrix

[2 -1 0 0.0
~12-10--0
012 -1--0
0 .---12-10
0 .- 0 -12 -1
0 .- 0 0 -12

The condition number of this matrix (hamely the quotientraf targest eigenvalue to the smallest
eigenvalue) is readily seen to be approximated by

4(n+1)?
K(n) ~ ——
wheren x nis the size of the linear system above (the authors are iadebtBastian Pentenrieder
of ETH Zurich for this observation). Note that even whers= 10’, which is a fairly modest
size compared to some being attempted in current high-emgputing, the condition number is
sufficiently large that the system (depending on the naté@iferection f(x)) cannot be reliably

solved using conventional IEEE 64-bit floating-point amitttic.

9

2. High-Precision Software

Algorithms for performing high-precision arithmetic arairfy well known [19], and soft-
ware packages implementing these schemes have been kvsitate the early days of computing.
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However, many of these packages require one to rewrite atgeapplication with individual sub-
routine calls for each arithmetic operation. The difficudfywriting and debugging such code has
deterred all but a few scientists from using such softwarg.ilthe past few years, high-precision
software packages have been produced that include highilwguage interfaces, making such
conversions relatively painless. These packages typicdilize custom datatypes and operator
overloading features, which are now available in languageh as C++ and Fortran-90, to facil-
itate conversion. Even more advanced high-precision ctatipun facilities are available in the
commercial productMathematicaandMaple, which incorporate arbitrary-precision arithmetic in
a natural way for a wide range of functions. However, theselycts do not provide a means to
convert existing scientific programs written in other laages.

Some examples of high-precision arithmetic software pgekdhat are freely available on the
Internet are the following, listed in alphabetical ordeneTARPREC, QD and MPFUN90 packages
are available from the first author’s websitetp://crd.lbl.gov/"dhbailey/mpdist

e ARPREC. This package includes routines to perform aritfowgth an arbitrarily high level
of precision, including many algebraic and transcendduatadtions. High-level language in-
terfaces are available for C++ and Fortran-90, supporgag integer and complex datatypes.

e GMP. This package includes an extensive library of routboesupport high-precision inte-
ger, rational and floating-point calculations. GMP has beerluced by a volunteer effort
and is distributed under the GNU license by the Free Softwatandation. It is available at
http://gmplib.org

e MPFR. The MPFR library is a C library for multiple-precisidioating-point computations
with exact rounding, and is based on the GMP multiple-piegifibrary. Additional infor-
mation is available atttp://www.mpfr.org

e MPFR++. Thisis a high-level C++ interface to MPFR. Additdimformation is available at
http://perso.ens-lyon.fr/nathalie.revol/software.ht ml. A similar package
is GMPFRXX, available ahttp://math.berkeley.edu/"wilken/code/gmpfrxx

e MPFUNO90. This is equivalent to ARPREC in user-level functbty, but is written entirely
in Fortran-90 and provides a Fortran-90 language interface

e QD. This package includes routines to perform “double-disuapprox. 31 digits) and
“quad-double” (approx. 62 digits) arithmetic. High-lesahguage interfaces are available
for C++ and Fortran-90, supporting real, integer and comgaatypes. The QD package is
much faster than using arbitrary precision software whear&2 digits is sufficient.

Using high-precision software increases computer rungjnsempared with using conven-
tional 64-bit arithmetic. For example, computations usiogble-double precision arithmetic typ-
ically run five times slower than with 64-bit arithmetic. SHigure rises to 25 times for the quad-
double arithmetic, to more than 50 times for 100-digit amigtic, and to more than 1000 times for
1000-digit arithmetic.
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3. Applications of High-Precision Arithmetic

Here we briefly mention a few of the growing list of scientifangputations that require high-
precision arithmetic, and provide some analysis of theieiical requirements.

3.1 Supernova Simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugssd the QD package, which
provides double-double (128-bit or 31-digit) and quadideu256-bit or 62-digit) datatypes, to
solve for the non-local thermodynamic equilibrium popiglas of iron and other atoms in the
atmospheres of supernovae and other astrophysical ob&¢t34]. Iron for example may exist as
Fe Il in the outer parts of the atmosphere, but in the inneisgae IV or Fe V could be dominant.
Introducing artificial cutoffs leads to numerical glitchas it is necessary to solve for all of these
populations simultaneously. Since the relative poputatb any state from the dominant stage
is proportional to the exponential of the ionization enetfpe dynamic range of these numerical
values can be very large.

In order to handle this potentially very large dynamic ranget at the same time perform
the computation in reasonable time, Baron, Hauschildt angeNt employ an automatic scheme
to determine whether to use 64-bit, 128-bit or 256-bit anitfic in both constructing the matrix
elements and in solving the linear system.

3.2 Climate Modeling

It is well-known that climate simulations are fundamentahaotic—if microscopic changes
are made to the present state, within a certain period oflateditime the future state is completely
different. Indeed, ensembles of these calculations angireztjto obtain statistical confidence in
global climate trends produced from such calculations. Assalt, computational scientists in-
volved in climate modeling applications have resigned thalires that their codes quickly diverge
from any “baseline” calculation, even if they only change tiumber of processors used to run
the code. For this reason, it is not only difficult for resésns to compare results, but it is often
problematic even to determine whether they have correefbjayed their code on a given system.

Recently Helen He and Chris Ding investigated this nonaepcibility phenomenon in a
widely-used climate modeling code. They found that aimbstféhe numerical variation occurred
in one inner product loop in the atmospheric data assiraiasiep, and in a similar operation in
a large conjugate gradient calculation. He and Ding fourad #hstraightforward solution was to
employ double-double arithmetic for these loops. This Isirehange dramatically reduced the
numerical variability of the entire application, permitlicomputer runs to be compared for much
longer run times than before [25].

3.3 Planetary Orbit Calculations

One central question of planetary theory is whether the sgstem is stable over cosmologi-
cal time frames (billions of years). Planetary orbits welbivn to exhibit chaotic behavior. Indeed,
as Isaac Newton once noted, “The orbit of any one planet dispem the combined motions of all
the planets, not to mention the actions of all these on eaudr.offo consider simultaneously all
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these causes of motion and to define these motions by exacallwing of convenient calculation
exceeds, unless | am mistaken, the forces of the entire himtedlect.” [22, pg. 121].

Scientists have studied this question by performing vengiterm simulations of planetary
motions. These simulations typically do fairly well for pmperiods, but then fail at certain key
junctures, such as when two planets pass fairly close to ethelr. Researchers have found that
double-double or quad-double arithmetic is required tadagevere numerical inaccuracies, even
if other techniques are employed to reduce numerical eR@]r [

3.4 Coulomb n-Body Atomic System Simulations

Numerous computations have been performed recently ugjhepnecision arithmetic to study
atomic-level Coulomb systems. For example, Alexei FrolovQoieen’s University in Ontario,
Canada has used high-precision software to solve the dizeeraigenvalue probler(rﬁ — Eé)C =
0, where the matrices andSare large (typically 3000x 5,000 in size) and very nearly degen-
erate. Until recently, progress in this arena was severatygdered by the numerical difficulties
induced by these nearly degenerate matrices.

Frolov has done his calculations using the MPFUN90 packaik,a numeric precision level
exceeding 100 digits. Frolov notes that in this way “we camsoder and solve the bound state few-
body problems which have been beyond our imagination evenyfears ago.” He has also used
MPFUN90 to compute the matrix elements of the Hamiltoniartrial and the overlap matrix
Sin four- and five-body atomic problems. As of this date, Frdhas written a total of 21 papers
based on high-precision computations. Two illustrativaregles are [13] and [23].

3.5 Studies of the Fine Structure Constant of Physics

In the past few years, significant progress has been achiewsihg high-precision arithmetic
to obtain highly accurate solutions to the Schrodinger ggudor the lithium atom. In particu-
lar, the nonrelativistic ground state energy has been ledémlito an accuracy of a few parts in a
trillion, a factor of 1500 improvement over the best pregigasults. With these highly accurate
wavefunctions, Zong-Chao Yan and others have been ablsttithe relativistic and QED effects
at the 50 parts per million (ppm) level and also at the one mwal [30]. Along this line, a number
of properties of lithium and lithium-like ions have also hesalculated, including the oscillator
strengths for certain resonant transitions, isotopesshifsome states, dispersion coefficients and
Casimir-Polder effects between two lithium atoms.

Theoretical calculations of the fine structure splittingsélium atoms have now advanced to
the stage that highly accurate experiments are now planien some additional computations
are completed, a unique atomic physics value of the finetstteiconstant may be obtained to an
accuracy of 16 parts per billion [32].

3.6 Scattering Amplitudes of Quarks, Gluons and Bosons

An international team of physicists, in preparation for ttiegge Hadron Collider (LHC), is
computing scattering amplitudes involving quarks, gluansl gauge vector bosons, in order to
predict what results could be expected on the LHC. By def#hudse computations are performed
using conventional double precision (64-bit IEEE) arithimeT hen if a particular phase space point
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is deemed numerically unstable, it is recomputed with deulguble precision. These researchers
expect that further optimization of the procedure for idfgittg unstable points may be required
to arrive at an optimal compromise between numerical acyuaad speed of the code. Thus
they plan to incorporate arbitrary precision arithmetising either the MPFUN90 or ARPREC
packages, into these calculations. Their objective is gigthea procedure where instead of using
fixed double or quadruple precision for unstable pointsntimaber of digits in the higher precision
calculation is dynamically set according to the instapitif the point [21].

In a related study, various checks of instabilities are eygid, such as by comparing gluon
amplitudes with known analytic values whenever possibfea given point is deemed unstable
by these tests, the researchers employ the QD package taltexe the unstable points using
higher precision (double-double or quad-double as needBdtause only a few points have to
be re-computed to higher precision, they find that theirayervaluation time is not significantly
increased [16].

Two other recent examples of employing high-precisionhardtic in fundamental physics
calculations of this type are [27] and [20].

3.7 Nonlinear Oscillator Theory

Quinn, Rand, and Strogatz recently described a nonlineallaier system by means of the
formula

N 1

0= 24/1-2(1-2(i—1)/(N—-1))2— .

21( ViSO 2 DINDE 1>>2>

They noted that for larg®, s~ 1—c/N, where ¢ = 0.6054436... These researchers asked the
present authors and Richard Crandall to validate and extesdomputation, and challenged us

to identify this limit if it exists. By means of a Richardsortepolation scheme, implemented on
64-CPUs of a highly parallel computer system, we computsth@uthe QD software)

¢ =0.6054436571967327494789228424472074752208996

This led to a proof that the limit exists and is the root of a Hurwitz zeta functi¢l/2,c/2) =0,
where{(s,a) := Sn>01/(n+a)°. As a bonus, we obtained some asymptotic terms [8].

3.8 Experimental Mathematics

High-precision computations have proven to be an esseatblor the emerging discipline of
“experimental mathematics,” namely the utilization of raodcomputing technology as an active
agent of exploration in mathematical research [17][5]. ©h¢he key techniques used here is
the PSLQ integer relation detection algorithm [10]. An gee relation detection scheme is a
numerical algorithm which, given amlong vector(x;) of real numbers (presented as a vector of
high-precision floating-point values), attempts to recdlie integer coefficient&s;), not all zero,
such that

Xy tapxe+--+aXn =0
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(to available precision), or else determines that therenarsuch integers$a;) such that the Eu-

clidean norm\/af +a3+---+a2 < M for some bound. The PSLQ algorithm operates by devel-
oping, iteration by iteration, an integer-valued matixwhich successively reduces the maximum
absolute value of the entries of the vecyor Ax (wherex is the input vector mentioned above),
until one of the entries of is zero or within an “epsilon” of zero. With PSLQ or any othate-
ger relation detection scheme, if the underlying integ&atian vector of lengtm has entries of
maximum sized digits, then the input data must be specified to at Iedsligit precision (and the
algorithm must be performed using this precision level)lse ¢he true relation will be lost in a sea
of spurious numerical artifacts.

Perhaps the best-known application of PSLQ in experimenghematics is the 1996 discov-
ery of what is now known as the “BBP” formula far.

n:§i<4—2—l—l>

L 16¢\8k+1 8k+4 8k+5 8k+6)

This formula has the remarkable property that it permits tmnealculate binary or hexadecimal
digits beginning at tha-th digit, without needing to calculate any of the first 1 digits, using

a simple scheme that requires very little memory and no plaeHprecision arithmetic software
[4][17, pg. 135-143]. Since 1996, numerous other formufakie type have been found, using the
PSLQ-based computational approach, and then subseqpeotign [17, pg. 147-149].

In an unexpected turn of events, it has been found that trmspwter-discovered formulas
have implications for the age-old question of whether (ahg)wthe digits of constants such as
and log 2 are statistically random [11][17, pg. 163—174]isEame line of investigation has further
led to a formal proof of normality (statistical randomnessispecific sense) for an uncountably
infinite class of explicit real numbers. The simplest examydlthis class is the constant

o 1
3= 2 3

which is provably 2-normal: every string af binary digits appears, in the limit, with frequency
2 -"M[12][17, pg. 174-178].

3.9 Ising Integrals

Several recent applications of high-precision computatiave attempted to recognize definite
integrals (typically arising in mathematical physics agations) using the methods of experimental
mathematics. These computations have required the enmlwadtintegrals to very high precision,
typically 100 to 1000 digits. In our studies, we have uselegitGaussian quadrature (in cases
where the function is well behaved in a closed interval) er‘tanh-sinh” quadrature scheme due to
Takahasi and Mori [29] (in cases where the function has aniieftlerivative or blow-up singularity
at one or both endpoints). For many integrand functionsseteehemes exhibit “quadratic” or
“exponential” convergence — dividing the integration it in half (or, equivalently, doubling the
number of evaluation points) approximately doubles thelmemof correct digits in the result.

The tanh-sinh scheme is based on the observation, rootbe Euter-Maclaurin summation
formula, that for certain bell-shaped integrands (namlebsé where the function and all higher
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derivatives rapidly approach zero at the endpoints of ttexval), a simple block-function or trape-
zoidal approximation to the integral is remarkably acaifat pg. 180]. This principle is exploited
in the tanh-sinh scheme by transforming an integral of argiumction f(x) on a finite inter-
val such ag—1,1] to an integral on(—o, ), by using the change of variable= g(t), where
g(t) =tanh(1t/2-sinht). The functiong(t) has the property thaj(x) — 1 asx — o andg(x) — —1
asx — —oo, and also thayy (x) and all higher derivatives rapidly approach zero for largsitive
and negative arguments. Thus one can writehforO0,

1 o0

[ 10a = [ t@g@d = h Y wicx).

where the abscissas = g(hj), the weightsvj = ¢ (hj), andN is chosen large enough that terms
beyondN (positive or negative) are smaller than the “epsilon” of lieneric precision being used.
In many cases, even wheféx) has an infinite derivative or an integrable singularity & onboth
endpoints, the transformed integraf((t))d'(t) is a smooth bell-shaped function for which the
Euler-Maclaurin argument applies. In these cases, the ertbis approximation decreases more
rapidly than any fixed power df.

In a recent study, the present authors together with RicGeaddall applied tanh-sinh quadra-
ture, implemented using the ARPREC package, to study thenfilg classes of integrals [7]. The
D, integrals arise in the Ising theory of mathematical physicsl theC,, have tight connections to
guantum field theory.

dy dun

/ /0 (Y7 1UJ+1/UJ)) Pu W

/ / i< u.+u,> du;  du,
D, = b ]
n! 0

(s UJ‘”-/“J)) U1 Un

2
u.

2/ / L) dtydts- -
<l<J <nuk+ul>

where (in the last linedi = 1< , t;.

Needless to say, evaluating thesdimensional integrals to high precision presents a dagnti
computational challenge. Fortunately, in the first caseywee able to show that th@, integrals
can be written as one-dimensional integrals:

Cn:

o

En

th,

2n 00 n
Ch = ﬁ/ PKo (p) dp,
- JO

whereKg is themodified Bessel functidi]. After computingC, to 1000-digit accuracy for various
n, we were able to identify the first few instance<Ggfin terms of well-known constants, e.g.,

1 1
Cs=L32) =} ((3n+ 12 (3n+ 2)2>

n>0
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where{ denotes the Riemann zeta function. When we compQgddr fairly large n, for instance
C1024 = 0.6304735033743867961220401927108789043545870787327.32

we found that these values rather quickly approached a.lilijt using the new edition of the
Inverse Symbolic Calculatpravailable athttp://ddrive.cs.dal.cal"isc , this numerical
value can be identified as

lim C, = 2%,

Nn—oo

wherey is Euler’s constant. We later were able to prove this facisithmerely the first term of an
asymptotic expansion—and thus showed thatGhmtegrals are fundamental in this context [7].

The integraldD,, andE,, are much more difficult to evaluate, since they are not rdaietd
one-dimensional integrals (as far as we can tell), but wéttiain symmetry transformations and
symbolic integration we were able to reduce the dimensi@ath case by one or two. In the case
of D5 andEs, the resulting 3-D integrals are extremely complicated viieiwere nonetheless able
to numerically evaluate these to at least 240-digit prenisin a highly parallel computer system.
In this way, we produced the following evaluations, all ofigéhexcept the last we subsequently
were able to prove:

D, = 1/3

D3 = 8+4417%/3—27L 3(2)

Dy = 4m?/9—1/6—71(3)/2

E, = 6—8log2

Es = 10— 2m° — 8log 2+ 32lo¢f 2

E, = 22— 82 (3) — 24log 2+ 176log’ 2 — 256(log®2) /3+ 167 log 2 — 2211% /3

Es = 42— 1984Liy(1/2) + 189 /10— 74 (3) — 1272 (3)log 2+ 407 log? 2
—62r% /3+ 40(1%log 2) /3+ 88lod* 2+ 464 logf 2 — 40l0g 2

where Li denotes the polylogarithm function. In the casBafD3; andDy, these are confirmations
of known results. We tried but failed to recognig in terms of similar constants (the 500-digit
numerical value is available if anyone wishes to try). Thejectured identity shown here féis
was confirmed to 240-digit accuracy, which is 180 digits melythe level that could reasonably be
ascribed to numerical round-off error; thus we are quitdident in this result even though we do
not have a formal proof.

In a follow-on study [9], we examined the following genezalion of theC, integrals:

Coy 4 [ © 1 duyy  du,
nk = ﬁ/o /o N Wl ug ug
' (1 (uj+1/up)) n

Here we made the initially surprising discovery—now proirefi8]—that there are linear relations
in each of the rows of this array (considered as a doublyitefiectangular matrix), e.g.,

0 = C30—84C3, +218C34
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0 = 2G5 — 69Cs3+ 13835

0 =Cg2—24C54+40C36

0 = 3233 — 63005+ 945Cs7

0 = 128054 — 21756+ 30243 5.

In yet a more recent study, co-authored with physicists @&8roadhurst and Larry Glasser
[6], we were able to analytically recognize many of th€g integrals—because, remarkably,
these same integrals appear naturally in quantum fieldyHéaroddk). We also discovered, and
then proved with considerable effort, that wiy normalized byCpx = 2"cn/(n! k!), we have

)

C3o0 =

3Ic(1/3) V3 5, 1/2,1/2,1/2
32me2 - 8 ° 1,1

1

4

_\3m 1/2,1/2,1/2
G2 = sz( 2,2

m & 1/2,1/2,1/2,1/2
“o=7 Z) ( 11,1 l)
n4 1/2,1/2,1/2,1/2 1
G2 =gz | 1,11

1/2,1/2,1/2,1/2
—34%(/ oar

3
1
)|-%
wherepFy denotes thgeneralized hypergeometrianction [1]. The corresponding odd values are
C31=3L 3(2)/4,c33 =L 3(2) —2/3,¢c41=7{(3)/8 andcs3 = 7{(3)/32— 3/16.

Integrals in the Bessel moment study were quite challengireyaluate numerically. As one
example, we sought to numerically verify the following itignthat we had derived analytically:

/2 ,m/2 i
G0 = 2/ / K(sinB)K (sing) d6dg.
/2 "/2 co§eco§cp+4sm2(6+cp)

whereK denotes the elliptic integral of the first kind [1]. Note thiais function has blow-up sin-

gularities on all four sides of the region of integrationtwparticularly troublesome singularities
at(m/2,—m/2) and(—m/2,1/2) (see Figure 1). Nonetheless, after making some minor $ubsti
tions, we were able to evaluate (and confirm) this integrdl20-digit accuracy (using 240-digit
working precision) in a run of 43 minutes on 1024 cores of theahklin” system at LBNL.

4. Conclusion

We have presented here a brief survey of the rapidly expgrafiplications of high-precision
arithmetic in modern scientific computing. It is worth ngfithat all of these examples have arisen
in the past ten years. Thus we may be witnessing the birth efvaema of scientific computing, in
which the numerical precision required for a computatioassmportant to the program design as

10
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Figure1: Plot of cs g integrand function.

are the algorithms and data structures. We hope that ougysand analysis of these computations
will be useful in this process.

Efforts to analyze integrals that arise in mathematicalspisyhave underscored the need for
significantly faster schemes to produce high-precisionasbf 2-D, 3-D and higher-dimensional
integrals. Along this line, the “sparse grid” methodologgshsome promise [28][31]. Current
research is aimed at evaluating such techniques for higtigion applications.
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