
P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events in Quasi
Real-Time

Hegoi Garitaonandia∗

NIKHEF
E-mail: Hegoi.Garitaonandia@cern.ch

Sander Klous
NIKHEF
E-mail: Sander.Klous@cern.ch

Brian Petersen
CERN
E-mail: Brian.Petersen@cern.ch

Anna Sfyrla
UIUC
E-mail: Anna.Sfyrla@cern.ch

In this paper we present a new fail-over framework for the ATLAS online system. The main goal

of this system is to identify problems as soon as possible andreduce the turn-around time for

fixing these problems. Design, implementation, performance and results are discussed in detail.

XII Advanced Computing and Analysis Techniques in Physics Research
November 3-7 2008
Erice, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

Trigger Level 3
(Event Filter)

L2 ProcessorL2 Processor

ATLAS
Dataflow

Detectors
Readout

FE FE FE

ROD

ROB

ROS

Subfarm Inputs

Subfarm Outputs

Event Builder Network

Event Filter Network

24hr buffer

Trigger Level 1

Custom Electronics,
Firmware,

Lookup Tables

Trigger Level 2

Regions of Interest - RoI

RoI Builder

L2 ProcessorL2 ProcessorL2 Processor

RoI Data
2% = 3GB/s

L2 ProcessorL2 ProcessorEF Processor

Event
3GB/s,
decision

triggering non triggering

decision

decision

calibration

(partial) events

physics

events

express

events

debug

events

to MDT
centres

Subfarm Inputs

Event Filter Network

Subfarm Outputs

24hr buffer

Subfarm Inputs

Event Filter Network

Subfarm Outputs

24hr buffer

~2kHz*1kB

~50Hz*50kB ~200Hz*1.5MB ~10Hz*1.5MB very low rate

Figure 1: Architecture of the ATLAS Data Acquisition System. Data flows from detector (top) to mass
storage (bottom). Left side represents processing and selection, while right side represents data movement.

1. Introduction

The Trigger and Data Acquisition system (TDAQ) of the ATLAS experiment at the CERN
Large Hadron Collider is based on a multi-level selection process and a hierarchical acquisition
tree. The system, consisting of a combination of custom electronics and commercial products from
the computing and telecommunication industry, is requiredto provide an online rejection power of
106 and a total throughput in the range of Terabit/sec[1].

The TDAQ system is affected by many types of runtime errors, such us power cuts, networking
timeouts, operating system failures, crashes, and algorithm errors (possibly due to the processing
of new physics). Besides, in a system of such dimension [1] the probability of an element failing is
high. Redundancy and fault tolerance were therefore key design points of the ATLAS TDAQ. As a
result of this approach, not all errors force data taking to be stopped. Instead, when a minor error
occurs, the data associated to that error is marked. The subsequent elements in the TDAQ chain
then route that event to a special collection of events, without performing any further processing.
This disjunctive group composed by all the problematic events is calledthe debug stream.

Even though the problematic events are expected to represent only a small fraction of the
overall amount during normal operation, it is necessary to record and understand them. Discarding
them would imply loosing all the information that is necessary to debug the corresponding failure.
It would also introduce the risk of creating a bias in certainphysics channels. Keeping and ana-
lyzing the debug stream is of major importance during first beam commissioning and early data
taking, as unexpected issues are likely to occur. Treating the debug stream as soon as possible
allows to identify problems and reduce the turn-around timefor fixing them.

2

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

Figure 1 introduces a more detailed view of the TDAQ system. Data is moved from the detector
front-end electronics, in the upper part of the picture, to storage, in the bottom of the picture. The
upper left part shows the three decision levels of the hierarchical event selection. The first decision
level (L1) is implemented in hardware, while the second (L2)and third (L3, usually called Event
Filter or just EF) run in dedicated computer farms. The rightpart shows the elements of the TDAQ
system that are necessary to transport the data to storage. They feed the selection elements shown
on the left with data, but they do not participate in the eventselection process itself.

When the events arrive to storage, they are divided over different locations, according to the
streaming information. In normal operation the system is configured with the following stream
definitions: physics (events relevant for physic studies),debug (events that experienced an error),
calibration (events that are relevant for detector calibration), andexpress (a copy of a small fraction
of the physics events for fast offline data quality monitoring)

Inside the debug stream type, at least three different sub-streams are usually configured:de-
bug.HLTError, debug.L2Error, anddebug.EFError. The first of these sub-streams corresponds
with events that could not be correctly processed by the selection algorithms (e.g.: software ex-
ception, readout problems, etc). The second and third sub-streams are associated to online errors,
like timeouts or crashes. The index L2/EF indicates the selection trigger level where the error
occurred1.

By re-running the selection algorithms with no time constraints in thedebug.[L2/EF]Error
one can try to recover a significant fraction of the events. The recovered events can be assigned a
correct physics tag.

To understand and recover the events indebug.HLTError we need a longer turn around cycle,
as they usually imply software fixes. First the different type of errors must be classified. Then the
bug fixing process can be triggered (report, assignation, fixby expert, validation, installation, test).

In order to handle the debug stream we developed a software package called TriggerOffline.
In section 2 we describe its architecture. In section 3 we present some of the results obtained with
cosmic runs.

2. Quasi Real-Time Handling of Problematic Events

In the data chain, the TriggerOffline system is located just after storage of figure 1. It performs
two basic operations on thedebug stream as it comes out of the TDAQ system: fine grained error
classification and rerunning of selection algorithms. Mostdata exchange between TriggerOffline
and other ATLAS subsystems is performed through the Castor storage system at CERN[2]. A file
catalog2 is used for synchronization purposes, exchanging meta-data and bookkeeping.

The runtime procedure is described in figure 2. The manager queries the file catalog to check
whether the TDAQ system created more debug stream files. If new files became available, the
manager schedules several jobs in a batch queue, with links to the corresponding files. Parallelizing
this process is trivial since the events are independent from each other. The jobs copy the input
data from storage, process it, and then copy the output back to storage. The manager is in charge

1Note that there is nodebug.L1Error because the first online selection level is implemented in hardware.
2The file catalog is an application-specific solution implemented directly on top of Oracle. It has nothing to do with

the Grid-like file catalogs.

3

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

Figure 2: Overview of TriggerOffline in its context.

of keeping track of the status of the jobs, re-submitting failures, etc. In order to present the results
of this automatic process to the shifter, the manager creates a web report for each run. The quality
of the data is evaluated and problems are diagnosed with thisreport.

The first task is theevent header analysis. Its objective is to analyze the contents of the
debug stream and provide fine grained error classification. For this, theevent header analysis first
extracts information that has been recorded in the event header during data taking, such as the active
algorithms and their processing timing. As a second step, abundance and several correlations are
studied. When this procedure is applied to thedebug.[L2/EF]Error streams, it gives information
about aspects that could help identifying problems,e.g.: periods of run with bursts of errors. When
applied to thedebug.HLTError stream it gives information about algorithm problems.

The second task that the job performs is reprocessing the events with the L2 and EF se-
lection algorithms. The idea behind this is that the errors that pushed the event into thede-
bug.[L2/EF]Error, could be transient or cumulative, like timeouts or crashes. Thus they could
be recovered by feeding them to an independent system that reruns the trigger software. In order
to accomplish this reprocessing the L2 and EF algorithms arerepackaged in a regular batch job.

It also makes sense to feed thedebug.HLTError into the reprocessing, as some of the algorithm
errors are due to missing fields in the event header. Those fields might be missing because of
network timeouts which are transient errors and therefore recoverable. Sometimes it is possible
to reconstruct the missing fields of event header making use of redundant information from other
fields. In the end, bothevent header analysis andreprocessing run on every event of every debug
sub-stream.

In order to profit from existing software we evaluated several batch-like production systems.
We finally opted for Ganga[3], which is officially supported by ATLAS. It provides several built
in back-ends and applications. It also provides persistency, and some general purpose utilities.

4

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

run number
90600 90800 91000 91200 91400 91600 91800 92000 92200

ev
en

t
co

u
n

t

610

710

810

Integrated number of events per stream

efd_i
BPTX_i
efdProcTimeout_i
hlterror_i
efdStopTransition_i
CosmicDownwardMuons_i
IDCosmic_i
RPCwBeam_i
RNDM_i
L1CaloEM_i
TGCwBeam_i
CosmicMuons_i
L2ForcedAccept_i
L1Calo_i
efdPtCrash_i
MBTS_BCM_LUCID_i

Figure 3: Integrated number of events per sub-stream in the period September-November 2008. The hori-
zontal axis is the run number. Bigger run number means later in time.

However it still has a major drawback: it is oriented to user analysis, where the job is a monolithic
piece that cannot be modified at runtime, and where no progress is reported until the full job ends.
We created an extension of Ganga to solve this problem, GangaReal-Time Extension. It is based
on a hierarchical client server architecture, where a client is associated to each subjob. As the
subjobs finish, they contact the server that appends the partial report to the overall status. This way
the effect of progress update is accomplished. A higher level client-server layer is also available
to provide extra flexibility. In the setup with the extra layer, all the servers from the first layer act
as clients for a central server, creating a tree topology. This allows the application to define an
appropriate granularity in terms of subjobs.

In the case of the TriggerOffline, during an ongoing run when the manager notices that new
debug stream files are avaliable in Castor, it schedules a jobthat consists of several independent
subjobs. In the next iteration, when more files are avaliable, a new job is scheduled. All the main
jobs from the different iterations merge their results in the central server.

A major advantage of using Ganga is that it makes trivial to jump from using dedicated re-
sources to using the Grid.

3. Cosmic Ray Runs

In the period August-November 2008 the TriggerOffline system was validated with cosmic ray
runs. Figure 3 shows the integrated number of events per sub-stream during this period for about
100 different runs. It shows all three types, physics (e.g.: CosmicMuons, etc), calibration (in-
ner detector, electromagnetic calorimeter, etc), and debug (efd, efdProcTimeout, L2ForcedAccept,
hlterror, efdPtCrash). Note that the names vary slightly from the ones used in previous sections,
but it is only a matter of nomenclature. Heredebug.HLTError is calledhlterror, debug.L2Error
matchesL2ForcedAccept, anddebug.EFError is subdivided into several groupsefd, efdProcTime-
Out, efdStopTransition, efdPtCrash. The lines that correspond to the debug sub-streams do not
show up in figure 3 because of the difference in magnitude. A zoom-in to the debug stream is

5

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

run number
90600 90800 91000 91200 91400 91600 91800 92000 92200

ev
en

t
co

u
n

t

310

410

510

Integrated number of events in debug stream

efd_i
efdProcTimeout_i
hlterror_i
efdStopTransition_i
L2ForcedAccept_i
efdPtCrash_i

Figure 4: Integrated number of events per debug sub-stream in the period September-November 2008.

All
Entries 151
Mean 0.03182
RMS 0.1155

debug event fraction
-210 -110 1

1

10

210

All
Entries 151
Mean 0.03182
RMS 0.1155

distribution of percentage of debug events

Figure 5: Distribution of the fraction of debug events for 151 cosmic runs.

provided in figure 4. By the end of this period of cosmic runs, the total number of events in the
debug stream represents less than 0.2% of the total.

The distribution of the relative number of debug events to the total physics events is shown
in figure 5. In the vast majority of the runs less than 1% of the events go into the debug stream.
However, in longer runs the fraction reached over 30% (see figure 6). These short runs are mainly
tests of new configurations where things did not turn out as expected. During long stable runs, the
fraction of events in the debug stream is much lower.

One should note that TriggerOffline is mainly a debugging tool rather than a tool for recovering
from online problems. When the TDAQ system experiences important problems, runs are stopped,
analyzed, and once the problem is understood and tested (with the help of the TriggerOffline) the
corresponding changes are applied to the data acquisition system. Nevertheless the TriggerOffline
is able to recover some problematic events and reassign themto the physics streams.

4. Conclusions

When the ATLAS online system experiences software errors, its fault tolerance mechanism

6

P
o
S
(
A
C
A
T
0
8
)
0
3
1

ATLAS Handling Problematic Events Hegoi Garitaonandia

number of physics events
0 5 10 15 20 25

610×

d
eb

u
g

 e
ve

n
t

fr
ac

ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 All
Entries 151
Mean x 1.498e+06
Mean y 0.02536
RMS x 3.535e+06
RMS y 0.03458
 0 3 0
 0 148 0
 0 0 0

All
Entries 151
Mean x 1.498e+06
Mean y 0.02536
RMS x 3.535e+06
RMS y 0.03458
 0 3 0
 0 148 0
 0 0 0

0

10

20

30

40

50

60

70

debug events fraction vs length of the run

Figure 6: Correlation between the fraction of debug events with the lenght of the run for 151 cosmic runs.

routes the corresponding event data to the debug stream. We have developed a software package
called OfflineTrigger that analyzes and tries to recover these events in quasi real-time. The au-
tomatic reports generated by the TriggerOffline provide feedback to the TDAQ experts, helping
reduce the turn-around time for fixing online problems.

The TriggerOffline software has been helpfull in diagnosingproblems during cosmic runs.
Now, it is applied beyond its original scope, in validation of new trigger menus and releases, before
they are comissioned in the TDAQ system.

References

[1] The ATLAS Collaboration. Atlas high-level trigger, data-acquisition and controls: Technical design
report. CERN/LHCC/2003-022, 2003

[2] Jean-Phillipe Baud et al. CASTOR status and evolution, Computing in High Energy and Nuclear
Physics, La Jolla California, March 2003

[3] Johannes Elmsheuser et al. Computing in High Energy and Nuclear Physics, September 2007,
Victoria, Canada, September 2007

7

