PROCEEDINGS

OF SCIENCE

Evolution of the STAR Framework OO model for the
Multi-Core era

Valeri Fine *

Brookhaven National Laboratory
PO Box 5000, NY 11973, USA
E-mail: fi ne@nl . gov

Jérbme Lauret
Brookhaven National Laboratory
E-mail:j | aur et @nl . gov

Victor Perevoztchikov
Brookhaven National Laboratory
E-mail: per ev@nl . gov

With the era of multi-core CPUs, software paradieliis becoming both affordable as well as a
practical need. Especially interesting is to reheate the adaptability of the high energy and
nuclear physics sophisticated, but time-consumiugnt reconstruction frameworks to the
reality of the multi-threaded environment. The STARIine OO ROOT-based framework
implements a well-known "standard model" composédtmined modules, where input for
each module is the output of the other modules.ité\tbasic principle, modules do not
communicate with each other directly and act aseowers and providers of data structures.
They use the framework via the special “query” tlifish” API to query the presence of the
input data and publish the output results the nexlproduce. As a proof of principle, we will
show that by complementing the base framework with ability to start several modules in
parallel and synchronize the global data accessvesgt the "consumer" modules and
"producer”, one can transparently enhance the eswtigtackages to leverage the multi-core
hardware capability. Such conceptual design maatifim should allow re-using the existing
offline software, initially built with single threh architecture and embarrassingly parallel
processing in mind, in the multi-threaded environtrié needed. However, we realize that the
"query"/"publish" paradigm is not sufficient to rtime multi-threaded application effectively. It
should be complemented with an API to “registe® thodule output to notify the framework
members about an output dataset “to be produced’.s®dith such addition, the receiving
module thread can be automatically suspended itittta it has requested is not ready yet. We
will explain how the STAR Offline Framework was nified to test the present approach
through building sophisticated interactive realdiapplications.

Xl Advanced Computing and Analysis Techniquesiysies Research
Erice, Italy
3-7 November 2008

1 speaker

© Copyright owned by the author(s) under the terntheiCreative Commons Attribution-NonCommercial-®tdike Licence. http://pos.sissa.it

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

1. Introduction

The Solenoidal Tracker At RHIC (STAR) [1] is a largcceptance collider detector which
started data taking at the Brookhaven National tatiooy in summer 2000.

At the time, STAR developed a single all-purposé y®dular ROOT-package-based
Object-Oriented framework for simulation, reconstien and user analysis in offline
production also providing the capability to perfolimteractive physics analysis or online
monitoring [2] It implements a well-known architere model composed of chained modules,
where input for each module is the output of tHeeotmodules. Such scheme did fit well the
single thread batch enviroment and every unit ofkvweas organized in a tree-like sequence.
In recent times, the evolution of the hardware &RU architecture has made multi-core and
multi-CPU node not only affordable but a resporseatgrowing computing power demand
facing limitations in power consumption, cooling @ren environmental aspects such as floor
space. Under such new reality, it is especiallgremting to re-evaluate the adaptability of the
STAR framework and similar high energy and nucl@aysics sophisticated, but time-
consuming, event reconstruction applications tadladity of the multi-threaded environment.

Base principles for a proven and production-madenéwork build over a development
cycle of the order of ten years implies that anyeshing solution requiring changes of the core
code and algorithms by STAR scientist are not aedd@. In other words, any solution for
mature experiment such as STAR must be backwargatiple and “transparent” to minimize
development cost, further time investment and jessiisruptions in productivity.

2. STAR Framework OO Model

The STAR framework was designed to support chragicédly chained components,
which can themselves be composite sub-chains, aeithponents called “makers” (data object
owners) managing named “datasets” they have creaig@re responsible for [3].

“Makers” and “datasets” inherit from the “TDataSetlass which supports their
organization into hierarchical structures for maragnt.

“TDataSet” also centralizes almost all system tasks

= data set navigation,
» /O, database access,
* inter-component communication.
The main features of the STAR framework design:
= its “makers” and “datasets” share a common objexteh
» they derived from one and the same base “TData%ets
» the entire STAR reconstruction chain is a singlstance of the “StChain” class
(subclass of “TDataSet")

At its basic principle, modules do not communicaith each other directly and act as
consumers and providers of data structures. Theyhes framework via the “query” function
implemented by the method “StMaker::GetDataSet” thed‘publish” function implemented by

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

the method “StMaker::AddData()” which is intendedquery the presence of input data and
publish the output results that the module hasuywed. The details of STAR implementation
were published several times [2-4]. Figure 1 shthestwo levels schema of STAR production
chain. The parent — child makers (gray circlesatiehs are indicated with the blue dotted
arrows. The figure shows that each child “makerprsvided with dedicated private data-
structure (gray folders) to publish (green arrowviisg result and each maker can query (the red
arc arrows) the private result of the other memloéthe chains via “GetDataSet” interface.

Top “maker”

- GetDataSet()
“-ady Child “makers”

o e L o o I

Each maker can query the data by the other makers.

Figure 1. STAR framework "Query" (in red) /"Publién green) modules communications [3].
3. The “transparent” steps towards multi-core era

“By design” each framework module can work indegemtly of any other modules as
soon as its query and demands for data-sets aséiezhtThis suggested that it was possible to
“transparently” enhance the existent packagesverdge the multi-core hardware capabilities.
To do that it should be sufficient to

= complement the “TDataSet"-base framework with thditg to start several modules in
parallel

= provide some facility to synchronize the globatadaccess between the "consumer"
modules and "producer”

3.1. Evolution — main directions

The average “reconstruction chain” comprises of fmain steps namely, “Init”, “Clear”,
“Make” and “Finish” corresponding to respectivelymain initialization step, an event loop (a
method which will be called for each “event”), eadarbage collection or cleanup needed to be
done upon completion of all event processing. Stheefirst and last steps of the chain are
invoked once during a regular production sessiahtha “Event Loop” is called as many times
as we have events, one should expect a signifipgnformance gain mainly from the
parallelization of the “Clear/Make Event Loop”.rRbe time being, the first and the last steps
can be left unchanged and single-threaded

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

To go further we are concentrating our effort tpliement and test the crucial components
so that they can offer “transparent”

= parallelization, synchronization
= registration

3.1.1 “Transparent” parallelization and synchronization

To introduce the parallelization and synchronizatid the “Make()” methods called from
for the different “makers” of the STAR productioohain” and this in a “transparent” manner,
we found it is enough to

= re-implement the methods "Init()”, “Clear()”, “Magé, and “Finish()” in STAR’s
StMaker base class;

= add the extra thread-related private data-memhethda base classes. Especially, an
additional data-member for the thread ID is neddeatistinguish the object owned by the
different threads;

= make methods “atomic”;

= allow generating or using as many threads as theré’'makers” in the “next level of
hierarchy” of the “StChain” class instance inste&dalling the methods in loop.

Even though the average STAR chain consists of feaisd[3] of different “makers”, the
proposed solution does not lead to an applicatith hundreds of concurrent threads. Within
the STAR framework, the change of the hierarchieatl does not change the ability to query
the data and does not require changing any low-Imydementations either (Figure 2).

GetDataSet()

HFaAF 400 o

Figure 2. Adding the extra level of the “maker” raechy to minimize the number of the threads.

To get the optimal number of the threads (Figureh@ws three “maker” threads) and
avoid having as many threads as makers on a gillam qwith potential adverse due to
resource consuming), a simple solution is to hawvedtlitional layer of makers handling a “next
level of the hierarchy” reducing the demand fordianeous threads. The communication via
this additional layer does not require changing @ssr “maker” code hence “transparent”.

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

3.1.2 “Transparent” registrationions

It is noteworthy to realize that a "query"/"publigmaradigm is not sufficient to run the
multi-threaded application effectively. Such modébuld be complemented with an API to
“register” the module’s output data sets, allowiiog automatically suspending or resuming
other modules waiting for the registered “datasdtse produced. As illustration of this
principle, let us study Figure 3, which shows amertwo “makers” chain communication in a
single thread model. “Maker 1” produces data tN&ker 2" needs to complete its job. Since
they are executed in sequence, there are no synzation issues and all provider/consumer
relations are implicitly self-consistent.

Single O

thread -
O

Figure 3. The “maker” commucation within single ¢#faded chain.

Figure 4 shows that the same “chain”, if paralkizmay produce the wrong result since
“maker 2” can query “maker 1” for its consumingalaefore “maker 1” had the time to provide
it (generate it). Whenever “maker 1” finally pulbless its result, “maker 2” has already provided
the wrong result that is, its own provider's dagh 8ot based on nor built from the expected
output and information from the first “maker”.

| time >

O, O
Naive b

2 threads ﬂ Wrong way !
1 2 31 28

o a o o

“2" publishes the “1" publishes the
“wrong” result “useless” result

Figure 4. An example of the race condition withimalti-threaded chain.

Figure 5 illustrates that the introduction the &iddil facility and API to register the data
set within the “Init()” method resolves the ambiguiThis is because the thread belonging to
“maker 2” can be automatically suspended and tesumed as soon as the “maker 1” produced
the “registered” data.

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

One thread Two threads
| time >
' A " Xouer Produce’ 4)
y data’ et *\ Produce
; data
1 2 b 1 2 b 1 2 (5 1 2 b 1 QUery 2
register() lock() uspend() :’:é?ﬂ:go/

1 d dd o
H_/\ CQ;O A — _/

Init() _ —— Make() -/

EventLoop()

Figure 5. Synchronization between two threads utiiegegistration API.

During the “Init” step, “Maker 1" registers and théocks its private data folder using the
method “Clear()” leveraging thread synchronizatiechniques (see: Figure 5, blue arrow), for
example “mutex”. As result, the query invoked frdme concurrent thread by “maker 2” cannot
be returned immediately. As soon as “Maker 1” paetuand publishes its data it unlocks the
“mutex” to awake the waiting “GetDataSet” query.

4. Proof of principle implementation

To test the present approach, the STAR Offline lessark was modified to build an
interactive real time online application. An omiapplication was chosen as the mandatory
real-time requirement (quick response and rapidraativity) of such application justifies the
additional effort needed to transition to a multidgaded approach. Additionally, such
application would be tested on a 24x7 basis dutatg taking.

The first version of the “parallel” chain concepasvused in the context of the STAR
“Online Event Display” (Figure 6). Its multi-thread version allows the STAR shift crew to
investigate the detector response interactiveljhaut data taking interruption. It has been
deployed during the RHIC running year 8 and protedapproach can be implemented with a
reasonable amount of time investment [4] . The erokd version of our beta-application
example is being used during Run 9 (2009). It dostall essential components one can find
within the STAR full-fledged production “chains” duessentially

= atop level “maker” — “StSteeringModule”

* Input/Output “maker” — “StDataReadModule”

= a “worker maker” producing data: — ‘StDetectorGexmMle”
» avisualization module — “StDisplayModule”

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

Figure 6 presents the thread relation between “EiBsplay” modules: a top maker
coordinates the sequence of events and handlesitite 10 and Geometry related makers

StSteeringModule
A

StDetectorGeomModule

(]] .

StDisplayModule

Figure 6. Hierarchy of the concurrent STAR onlirie/ént Display” maker.

5. Conclusion

The analysis showed that the existing design of B Bigle-threaded framework could
evolve transparently to meet the Multi-Core Erauregment with little effort and no global re-
design. While it is clear one should anticipate ynaroblems arising from the onset of the
multi-core era and much additional effort (at altionic level) may be needed to fully harvest
the power of many core architectures, our appréaalfirst step toward a “soft” evolution of an
existing framework which has proven its worth amabsity through years of usage. In this
paper, we concentrated our effort to identify, iempént and test a crucial design component
targeted to achieve “transparent” parallelizatisynnichronization and registration of data in a
provider / consumer design model. Furthermore, sinde it relies on the ROOT base class
“TDataSet”, our approach could be made generaRf@OT users.

Our proof of principle implementation in an “Evemsplay” context allowed testing the
main design solution aimed to prepare STAR to eohdts production and analysis software
frameworks with the ability to take some advantajemodern hardware. More work will
certainly be needed to bring together the existeapnstruction framework and algorithms and
the full potential power of the multi-core hardwdoe the offline “event reconstruction” and
raise the level of usability of interactive databssis.

6. Acknowledgements

This work was supported by the Office of Nucleary$tts and High Energy Physics
within the U.S. Department of Energy Office of S$uie, and the U.S. National Science
Foundation

Evolution of the STAR Framework for the Multi-Cera Valeri Fine

References

[1] J. Adams et aExperimental and Theoretical Challenges in the Sledor the Quark Gluon Plasma:
The STAR Collaboration’s Critical Assessment offtaielence from RHIC Collisions Nuclear
Physics A, v. 757, p.102-183, 2005.

[2] V. Fine et al Steps Towards C++/0O0 Offline Software in STARoroceedings oCHEP’98
conference Chicago, 1998

[3] V. Fine et alOO Model of STAR detector for simulation, visudi@aand reconstructionin
proceedings ofCHEP’2000 conferengePadova, 2000

[4] V. Fine, et alThe Object Model to Construct the Mixed Open InméfROOT 3D scenein
proceedings oACAT 2007 Workshop, Amsterdam,20@3S(ACAT) 023

