PROCEEDINGS

OF SCIENCE

Job centric monitoring for ATLAS jobs in the LHC
Computing Grid

Erich Ehses 2, Torsten Harenberg °, Dennis Huning P9, Peter Mattig °,
Markus Mechtel P, Tim Minchen *4, Martin Rau 2, Peer Ueberholz ¢, Nikolaus Wulff 9
8Fachhochschule Kéin, Claudiusstr. 1, 50678 Koln, Germany
bBergische Universitat Wuppertal, GauRstraRe 20, 42119p&ftipl, Germany
®Hochschule Niederrhein, Reinarzstral3e 49, 47805 Krefe@many
dFachhochschule Miinster, HiifferstralRe 27, 48149 Munsemr@any

As the Large Hadron Collider (LHC) at CERN, Geneva, has begperation in September, the
large scale computing grid LCG (LHC Computing Grid) is metanprocess and store the large
amount of data created in simulating, measuring and amajyai particle physic experimental
data. Data acquired by ATLAS, one of the four big experimanthe LHC, are analyzed using
compute jobs running on the grid and utilizing the ATLAS safte framework ATHENA. The
analysis algorithms themselves are written in C++ by theslists using Athena and the ROOT
toolkit.

Identifying the reason for a job failure (or even the occeraof the failure itself) in this contextis
a tedious, repetitive and sometimes unfeasable task. Qdteleal with failures in the RUNNING
stage (as opposed to job submission failures or compilatimrs in the user algorithms), the job
is just being resubmitted. In a grid context, users are nal@wved to directly access the worker
nodes (WNs) their jobs run on. So, debugging of a user jobant&ely is not possible. Itis even
more complicated because the output-sandbox, which ecenthe jobs’ output and error logs,
usually is discarded by the grid middleware if the job fail&b, valuable information that could
aid in finding the reason of failure is lost. These issueslrésuinigh job failure rates and less
than optimal resource usage.

As part of the High Energy Particle Physics Community Gridjipct (HEPCG) of the German D-
Grid Initiave, the University of Wuppertal has developee flob Execution Monitor (JEM). JEM
helps finding reasons for job failures by two means: it pecaity provides vital worker node
system data and collects job run-time monitoring data. Byopming a supervised line-by-line
execution of the user job, this data is gathered. JEM praudsv possibilities to find problems
in largely distributed computing grids and to analyze thg®dblems in nearly real-time.

The monitoring information is presented to the user almustbintaneously for realtime analysis
and, for completed jobs, additionally stored in the jobsput sandbox for deeper post-mortem
analysis. As a first step, JEM is being integrated into ATLASY LHCb'’s grid user interface
Ganga. Jobs submitted in this way are monitored transggresquiring no additional effort by
the user.

In this work, the functionality of and the concepts behindAJ&re presented together with exam-
ples of typical problems that can easily be resolved usingutthermore, we present an ongoing

work of classifying problems automatically using expesteyns.

XII International Workshop on Advanced Computing and Asialfechniques in Physics Research
Ettore Majorana Foundation and Centre for Scientific Cul{uErice, Sicily
November 3-7, 2008

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Job centric monitoring in the LCG Tim Minchen

This work is divided into four sections. In the first sectitile motivation for the development of
a user centric job monitoring tool, regarding the LHC expemt ATLAS as context of the jobs to
be monitored, will be described. The second section comeréunctionality and concepts behind
JEM as well as a short description of some typical failurggtioer with their reasons occuring in
the aforementioned context which can be found using it. rAfte proposed interoperation between
JEM and a grid centric expert system (GridXP), also develagdehe University of Wuppertal, is
presented in section three, we conclude with an outlookinfthbeing developed at the moment
and opportunities for future work.

1. Motivation

1.1 Grid jobs in the ATLAS experiment

In the ATLAS experiment, grid jobs usually consist of

e an algorithm doing calculations on existing data or dateegation using the ATLAS soft-
ware framework ATHENA[1],

e code setting up ATHENA and the environment,

e ATHENA runtime code providing services like data I/O, loggiand bookkeeping,
e a short launcher application, usually implemented as-steilbt,

e and of course the data that is being processed.

The user algorithm itself is implemented in C++ and utiliZesary functions provided by ATHENA
and mathematical libraries such as ROOT]/2]. It is this cdde does the actual physics work: the
generation of physics data (e.g. Monte Carlo or detectoulsition), the conversion of this data
into other formats for further processing, or the analysisuch data. The ATHENA environ-
ment is set up by a collection of shell-scripts. Their mairmppse is to set up binary search paths,
data sources and other runtime information. ATHENA itselfigists of several modules written in
Python which prepare the analy'sgata and repeatedly call the user algorithm with data fragsne
(e.g. single physic event data). For this, the user algoriloaded beforehand as a shared library
by ATHENA and used by means of inter-language-calls by tht@dyinterpreter. The actual grid
job typically is a short launcher script that loads the ATHE&hvironment-setup scripts and trig-
gers execution of ATHENA, either written by the user or auatically created by a job submission
and management tool like Ganga[3].

To summarize, ATLAS grid jobs are generated or user-wrigieell scripts running a frame-
work of Python scripts that use algorithms from C++ sharedties. The fact that this application
model consists of several layers depending on each otheteiinented by different groups of
developers using different programming languages, ajréaglies a number of possible failure
conditions and errors. On top of that, one observes the stk contained in all human-written
software (invalid data and memory access, floating poingégtkans, logical errors, etc) and errors

*Speaker.
Lor simulation, data generation, conversion, etc.



Job centric monitoring in the LCG Tim Minchen

caused by the context, that is, the grid (submission erfailsires to query needed local and re-
mote services, environment errors and so on). Hence, theravealth of failure possibilities from
which only a small subset is under control of the user. Thesgsare classified in the next sec-
tion, considering the possibilities to determine the fa&lteason with the help of the job monitoring
software.

1.2 Job failures

For grid jobs, there are two classes of job failures to digtish in respect to the possibilities of
the user who has to determine the cause of the error. Theyecaagerated by the status assigned
to it by the grid middleware after execution. To avoid coidans we will explicitely seperate the
job into its “grid-part” and the “physics-part” in the folldng discussion. One has to be aware that
both parts combined form each job.

e Finished
If the grid job successfully leaves the state RUNNING, it &g assigned the state FIN-
ISHED by the grid middleware. Successful in this respectmadiacre was no middleware- or
environment-specific cause of job failure. Nevertheldssphysics job may have failed. The
job script terminating with a non-zero exit code most ofterams the physics job didn’t com-
plete successfully. Even so, its grid job status will be agINISHED instead of FAILED.
Moreover, even with an exit code of zero, the physics job nwyhave produced the desired
output (logical failure). The output of the job (stdout amdksr streams containing all output
of both the grid part and the physics part of the job) is usuminsmitted to the user via
the job’s output sandbox, an archive packed by the grid reiddie after the job finished,
containing this output as well as any data file created byahdégssuming they are correctly
declared in the job’s description). If the job exits with anmero exit code, these files are the
only data the user can analyze to determine the cause ofillmeféErrors during ATHENAS
environment setup, for example, usually result in messagiten by the remote shell into
stderr, whereas errors in ATHENA itself (meaning in its Rytlscripts, not during the inter-
language-calls into the user algorithm) usually resulttatigtrace information also written
to stderr. Fatal errors during the user algorithm, thatrigyre resulting in the abortion of
the current inter-language-call (e.g. floating point exiogys or access violations) result in
sparse stderr output from the user algorithm and, additiomaa stacktrace generated by an
error handler triggered by ATHENA, containing the last kthames of the user algorithm
(see fig. 1).

e Failed or Aborted
If the grid job fails for grid specific reasons, that means ghie middleware assigns the
status FAILED to it, the output sandbox usually is discarded stderr is not available. This
also holds for jobs that got aborted by the user, for exametabse the job seems to run
indefinitely and never finishes. In this case, the job statseito ABORTED.

Obviously, the user has little information to work with whhis job fails. In the first class of
failures, the stderr output can be analyzed, but often itainga insufficient data to find the error
cause fast and efficiently. The data is either insufficienttésif or hidden in pages of irrelevant



Job centric monitoring in the LCG Tim Minchen

error output created by the several layers of the applicadigscribed in Sec. 1.1. In the second
class of failures, the only information the user has is thatjob, in fact, failed. As a result, the

neccessity of a tool that monitors the job run is evident émomd class failures, but also first class
failures can be resolved easier and faster if more infoonas available, and the information that
is available is structured in an efficient way. The followisgction presents our job monitoring

solution JEM that can be used to achieve these goals.

2. The Job Execution Monitor

2.1 Overview

The Job Execution Monitor[4, 5, 6] (JEM) is an applicatiom iin user space and submitted
with user jobs to grid computing elements (CEs), providiolg $tatus, job error and environment
data to the user in nearly real-time. During the run of the jdig, vital system information on
the worker node (WN) the job was scheduled to run on, like CRiUraemory usage and free disk
space in the job’s working directory and temporary dirdesgris gathered periodically. The scripts
the user job itself consists ofre run in a supervised line-by-line mode, during which évéike
function and method calls, returns from functions and meghexceptions being raised, or shell
commands being executed are logged.

2.2 General Structure

JEM consists of two distinguished parts (fig. 2). The first porment, JEM Ul, is run on the
machine used to submit the monitored gridjolit can be run as a stand-alone tool providing a

Generating stack trace...

0xf 1891ecd in Hel |l oAl g::execute() at ../src/HelloAlg.cxx:124 from/hone/atl as029/ gl obus-tnp. wn
Oxf 3021ef8 in Al gorithm:sysExecute() + 0x98 from/griddata/gridsoft/atlas/prod/releases/rel_1
Oxf24c208e in AthenaEvent LoopMyr:: execut eAl gorithms() + Ox4e from/griddata/gridsoft/atlas/pro
Oxf 24c5a9c in At henaEvent LoopMyr: : execut eEvent (voi d*) + Oxc6c from /griddata/gridsoft/atlas/pr
Oxf24c799b in AthenaEvent LoopMyr:: next Event(int) + Ox33b from /griddatal/gridsoft/atlas/prod/r
Oxf24c1b17 in AthenaEvent LoopMyr::executeRun(int) + Ox17 from/griddata/gridsoft/atlas/prod/re
Oxf1cf1974 in ApplicationMr::executeRun(int) + 0x234 from/griddata/gridsoft/atlas/prod/relea
Oxf2cf0d34 in <unknown> from/griddatal/gridsoft/atlas/prod/rel eases/rel_14-2/GAUDI/v19r6p4- LCJ
0xf 379d25c in ROOT:: C ntex::Method_stub_w th_context (ROOT:: G ntex::StubContext_t*, G_ value*,
Ox0aa725de in <unknown function>

Oxf4cd6f14 in Cnt:: G __Call Func:: Execute(void*) + 0x94 from/griddata/gridsoft/atlas/prod/rele
Oxf 59f 291b i n PyROOT: : TRoot Cbj ect ByVal ueExecut or: : Execute(C nt:: G__Cal | Func*, void*) + 0x23 fr
Oxf 59f 793a i n PyROOT: : TMet hodHol der <PyROOT: : TScopeAdapt er, PyROOT: : TMenber Adapt er >: : Execut e(vo|
Oxf 59f acb3 in PyROOT: : TMet hodHol der <PyROOT: : TScopeAdapt er, PyROOT: : TMenber Adapt er >: : operat or ()
Oxf 59f f 588 i n PyROOT: : (anonynous nanespace):: np_cal | (PyROOT: : Met hodPr oxy*, _object*, _object*)
Oxf 7e4369c in PyCbject_Call at Objects/abstract.c:1861 from/griddata/gridsoft/atlas/prod/rele|
Oxf 7eb7654 in PyEval _Eval FrameEx at Python/ceval .c: 3777 from/griddatal/gridsoft/atlas/prod/rel
Oxf 7ebd865 i n PyEval _Eval CodeEx at Python/ceval.c:2833 from/griddata/gridsoft/atlas/prod/rele
Oxf 7ebb76d i n PyEval _Eval FraneEx at Python/ceval.c: 3661 from/griddata/gridsoft/atlas/prod/rel
Oxf 7ebd865 i n PyEval _Eval CodeEx at Python/ceval.c:2833 from/griddata/gridsoft/atlas/prod/rele
Oxf 7ebd9f 3 i n PyEval _Eval Code at Python/ceval.c:500 from/griddata/gridsoft/atlas/prod/release
Oxf 7edd6a0 in PyRun_Fil eExFl ags at Python/ pythonrun.c: 1264 from/griddata/gridsoft/atlas/prod/
Oxf 7eb1b18 in <unknown> from /griddata/gridsoft/atlas/prod/rel eases/rel_14-2/sw | cg/external /P

Figure 1: ATHENA-generated stacktrace of a crash in the user alguorith

2phash- or python-scripts, see sec. 2.3
3Typically; However, the JEM Ul can be run on any machine.



Job centric monitoring in the LCG Tim Minchen

JEMvZ2 ganga integration (optional)

JEMv2 Ul module

[ Receiver H HTML cutput }

trigger

JEM job submit

retrieve

JEMv2 WN code

TCP / HTTPs
R-GMA
MonALISA

l submit

Scriptmonitor

JEMZ WN module

publish

System resource monitor ]

Figure 2: General structure of JEM[7].

simplified job submission user interface, as command-low only decorating a usual grid job
with the monitoring functionality before submitting, oraplug-in into ATLAS’ job management
solution Ganga, adding the job monitoring benefits trareur to Ganga’s job submission func-
tionality. The latter is the preferred mode of executionEf] requiring no additonal effort by the
user besides setting a monitoring flag in the job’s desomipith Ganga.

The second component, JEM WN, is a job wrapper that is subxnitt the worker node with
the user job and augmenting it with the monitoring functiinaThe user job is encapsulated in
JEM WN and is run on the WN after JEM initialized and starteddiata taking and transmission
subsystems which will be described below. While the useigohn line by line and environment
data is taken periodically, all gathered monitoring datag@asmitted from JEM WN to JEM Ul in
nearly real-time.

Both parts of JEM are mainly implemented in python, havinty @nminimal set of software
dependencies easily provided by typical grid CEs. The téssion of monitoring data from the
worker node script to the JEM Ul application or -plugin isfoemed by one of a set of communi-
cation modes (named “valves”) using different communarathackends provided by JEM. There
is another ongoing work evaluating the different valves emiparing their applicability for JEMs
purpose in terms of data throughput and caused system lotim MIN and the Ul machines.



Job centric monitoring in the LCG Tim Minchen

2.3 Script monitors

At present, JEM is able to monitor bash- and python-scriftalls to other scripts automat-
ically cause the script monitor to fork and monitor the chafipt as well (if it is a monitorable
script as well). The following information is logged duritige supervised script execution by JEM
WN (for every logged event, besides the data listed in tHevi@hg paragraphs, the timestamp of
the event and the type of script - bash, python - are gathered)

¢ function calls Whenever a (python) function or class-method is calledc#iied and call-
ing frame are logged with filename, frame name and line nuniee arguments passed to
the called function are logged as well including a (possgigrtened) string representation
of their value.

e function returns If the python script execution leaves a function/method, &t frame
with file and line number as well as the return value (stringr@sentation of the value) is
logged.

e runcommands In bash scripts, the called shell commands, run application syntactical
constructs (loops, conditions, ...) are logged with thespective exit code.

e exceptions Python exceptions are logged with the causing frame (fraameen line num-
ber, file name), exception class name and reason (inforenstilng). Furthermore, the values
of local variables of the scope where the exception happaredathered.

The amount of this data that is actually logged can be corddybily several criteria to allow the
reduction of traffic and load on the sending (WN) and recei\idl) sides. These criteria include
a loglevel setting reducing the overall verbosity of theicmonitor, blacklists to skip whole
scripts, exception type filters and, as last resort, theadifieg of data at random if too much data
is generated. There exists an ongoing additional work toentlax data reduction more intelligent
and expedient.

2.4 System monitor

The system resource monitor (also called “Watchdog”) mkeally* gathers the following
monitoring data on the WN:

e CPU usage / system load

e Memory consumption / free memory

e Free disk space in the job’s working directory and temp (sb)sspace

e The hostname of the worker node

e The point in time this data was taken at

4The interval can be configured inside JEM



Job centric monitoring in the LCG Tim Minchen

More often than not, this data is very useful to determine¢ason for a job failure that otherwise
presents itself the same way a coding error or (grid-) enwrent error does. On the Ul side,
the watchdog data can be presented to the user in form of gi@xp CPU usage over time), to
visualize trends and to identify temporary problems on the that possibly have caused the job
failure.

2.5 Examples

The following examples for typical failure scenarios in AENA grid jobs can be resolved by
using JEM. The failed job is described, the information gatk by JEM in respect to the failures
is shown and the therefor possible resulting interpratabipthe user is given.

Log file exceeding disk space If the log file written by the grid job heads out, exceeding the
available disk space on the worker node, the job cannotroomtio run. Aditionally, the middle-
ware stores information in the very same directory and vatllme able to finish and write the job
information back. A typical error that will be presentedtie user in this case is shown in fig. 3.

The job failure caused by the unsuccessful attempt to apfetite job’s log file is nearly
impossible to detect without a real-time job monitoringilfaclike JEM, because for this failure
reason, the middleware instantly aborts the job and thetaffigob directory is deleted by the batch
system. So, no further log output besides status messagenshdig. 3 is available to the user,
and this message clearly doesn’t point at a disk space pnoble

By using JEM, the amount of available disk space in the warldirectory of the job is
recorded and can be presented to the user at regular irgedveady during the job run. By com-
paring several values, a trend can be deduced, that mayt aohagrimminent job failure caused by
exceeding of disk space.

R

BOOKKEEPING INFORMATION:

Status info for the Job : https://wmslb00.hep.ph.ic.ac.uk:3000/2d6QUUdIw_ =ClFJWwHCEM=A
Current Status: Aborted
Logged Reason(s):

- File not available.Cannot read JobWrapper cutput, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
File not available.Cannot read JobWrapper output, both from Condor and from Maradona.
= File not available.Cannot read JobWrapper output, both from Condor and from Maradona.

Status Reason: hit job shallow retry count (10)

Destination: cel2.tier2.hep.manchester.ac.uk:2119/jobmanager-lcgpbs-atlas

Submitted: Sun Dec 7 00:53:08 2008 GMT

- Cancelling = 0

= Ce node = gt2 cel2.tier2.hep.manchester.ac.uk:2119%/jobmanager-lcgpbs

- Children num a

Figure 3: Example of a grid job whose log file size exceeds the availdlsle space on the worker node
(grid job status as reported by the middleware is shown here)



Job centric monitoring in the LCG Tim Minchen

Exceeding the wall time limit  Grid jobs are not permitted to run indefinitely on the workede.
Computing elements typically offer several grid job quepesviding different limits of valid job
run times. The user has to define an estimate about the ruafimpb in the job definition file.

If this estimate is too low, jobs are killed by the batch systnd a signal (SIGUSR1 and later
SIGUSR?2) is sent to the job. Due to the complexity of the safenframework, the signals may be
catched and the job is killed in a hard matter, obfuscatirgréal failure reason (Wall time limit
exceeded), or the job simply behaves unexpectedly. UsiM tHe signals and their source can be
clearly identified, without the need for the user to code additional signal leaad

ATHENA version mismatch Updates to the ATHENA software framework are released on a
regular basis. One distinguishes between major and mitesges. Usually, code and data files
are compatible between different minor releases while tiaeyot be exchanged generally between
releases of different major release numbers.

However, as data taking is about to begin shortly, the deestotry to unify at least the data
format, so that measured and simulated data can be readifféttedt releases (or at the very least,
data created with one release should be usable with any meilgase).

In some cases, however, code still may crash or behave aggemnwexpectedly if for example
a data file written with an older release is analysed with aen@me. These errors are hard to detect
(for example, the code runs forever without any meaningfihot). In most cases some structures
which are accessed by the analysis code just are not fillegkdillad with different (mismatching)
types of data.

Using JEM’s C-Tracer and JEMpole (see 4.2) the user has thslplity to analyse the data
structures read by the analysis code just before it craghasamy other time during runtime and
compare it with the expectations made in the analysis colis.i§ often much easier than digging
into the very large repository of the ATHENA framework andsearch for the changes made
between the two affected versions, especially if one hagiea which data structures cause the
problems. They can be easily identified with JEM.

3. GridXP

3.1 Overview

GridXP[8] is a rule-based expert system with a client/searehitecture. It was developed at
the University of Wuppertal to aid users in finding the reafmrjob failures and to suggest steps
to take to handle the failure. GridXP and another expertesysthe Pixel Advisor, developed to
help the ATLAS experiment’s operators at CERN to deal witbieconditions in ATLAS’ Detector
Control System (DCS), are combined into UnifiedXP, a unifiepegt system framework sharing
core services, the visualisation and user interface[9].

If an error occured during the run of a grid job, a user muster\almost all collected in-
formation about it to determine what was the problem. Grid&¥#ews all available information
automatically. If it recognises that a job finished with aroeit visualises this and describes why
it has failed. Futhermore it gives one or more suggestions the problem might be fixed. A

5This holds for signals in Python modules. To see signals @+@&tModules, the C-Tracer is needed (see sec. 4.2).



Job centric monitoring in the LCG Tim Minchen

user can rate the advice “positive” if it was helpful or “néga’ if it was unhelpful. This rating is
used as a quantifier over all advices, eventually changien tlisplayed order in the suggestions
list. Additionally, to aid in finding error reasons, it canngbine all data fed into it about a WN to
determine if an error originates from the infrastructureherjob itself.

3.2 Proposed interoperation of JEM and GridXP

At present, GridXP utilizes real-time job information pid®d by means of the Relational
Grid Monitoring Architecture, R-GMA[10]. Among the inforation gained in this way one can
find job state transitions like job start- and job end-evehtg no detailed real-time monitoring
data. A direct interface from JEM into GridXP is planned,tthdl allow the GridXP ruleset to
fully take advantage of the power of monitoring provided BV In case of a job failure, GridXP
will be able to consider not only the environment informat{@orker node system monitoring data
and grid status), but also the current execution statuseojotth, commands executed and possibly
exceptions thrown just before the failure. So, GridXP dyebénefits from JEMs input. On the
other hand, JEM also benefits from GridXPs possiblilitieautomatically interpret the monitoring
data and visualize the result to the user in a much more uadelable way than by directly looking

at the logs.
Welcome to Applicationtgr $Rewision: 1,72 %
running on wniG4 on Tue Jan B 12:43:12 2009
Applicationtgr INFO Successfully loaded modules : AthenaServices
Applicationtgr INFO Application Manager Comfigured successfully
Applicationtgr INFO Updating ROOT::Reflex::PluginService::SetDebugllevel ) to level=0
StatusCodeSvc INFO initialize

——— List of all Yolume Builders registered with Ceo2GdSwc ——-

Yolume Builder Extended_Parameterised_Yolume_Builder
Yolume Builder Generic_VMolume_Builder

Yolume Builder Parameterized_Wolume_Builder

Volume Builder Single_LY_Copy_Builder

default builder is Extended Parameterised_Volume_Builder

#MLFileCatalog: lewel[Infol Connecting to the catalog

Pool¥MLFileCatalog: level[Infaol ¥erces-c initialization Mumber O

Pool¥MLFileCatalag: level[Info] Read-only filesystem

Pool¥MLFileCatalog: level[Info] XercesC termination number O

#HMLFileCatalog: levellInfo] Disconnected

WARMIMG: $POOL_CATALOG iz not defined

using default “xmlcatalog_file:PoolFileCatalog,xml'

WMLFileCatalog: levellInfol Connecting to the catalog

Pool#HLFileCatalog: lewel[Infol ¥erces—c initialization Mumber O

WMLFileCatalog: levellInfo] Connecting to the catalog

Pool¥MLFileCatalog: lewel[Infol File PoolFileCatalog,xml does not exist. & new one is created
Pool¥MLFileCatalog: level[Infol Read-only filesystem

PoolSwc WARMING File iz not in Catalog or does not exist,

PoolSwc WARMING Do not allow thiz ERROR to propagate to physics jobs,

ERROR (pool):

POOL> Unknown storage tupe requested:

ImplicitCollection Warning Cannot find persistency storage type, Trying ROOT_StorageType
Warning in <TClassiiTClass>: no dictionary for class DataHeader_p3 is awailable

Warning in <TClassi:TClass?: no dictionary for class DataHeaderElement_p3 is availsble
McEvent, tthar,7.root  Always RBoot file wersion:51800

McEvent,tthar,7.root  Always Root file wersion:51800

POOLContainer_DlataHeader Error The requested container:PO0LContainer_latsHeader cannot be opened!
InputtetalataStorellARNING retrieve(const): Mo walid proxy for object MetaDataSvc of tupe DataHeader(CLID 222376821)
MetalataSuc WARNING Unable to load Metalatas Proxies

Figure 4: Example of a athena job running reprocessing code with argtstedata file written by an older
release. In this example, simply nothing happens aftestbis, so the user is lost.



Job centric monitoring in the LCG Tim Minchen

4. Conclusion

4.1 Status of JEM

In its current form, JEM already can be used to monitor tyipigal jobs to gather valuable
information about job failures or the current job status éanhy real-time. Errors with misleading
or hidden messages can be classified by the user more eagibn, @e real-time information
even predicts job failures about to occur, allowing to aloid re-submit the job with corrected or
optimized settings and parameters. This shortens thelbxanad-time needed for successful job
runs and leads to more efficient resource usage.

Naturally, the benefit of using a monitoring framework likeM allowing to determine error
reasons has its price. The user job augmented with JEM needsrl as JEM's functionality
causes a certain performance impact. The exact impact otinnenand resource usage is still to
be determined (but such efforts are already being takerseseet.3), but rough estimates can be
given here. The initialization of JEM on the worker node tlsaperformed before the user job
is launched needs a short constant time in the region of ®wnds. Functions in traced Python
modules take roughly 1.5 times longer to execute, deperatintpeir complexity (The longer the
functions themselves take the less the impact of JEM begonfeS/C++-modules are traced as
well (see sec. 4.2) the performance impact during the usdysia (Interlanguage-calls into shared
libraries containing physics analysis code) at the mofiaoteases by at least a factor of three, up
to some 10-fold impact if the user algorithm’s memory is extpd deeply. This means, of course,
that JEM cannot be just submitted in full verbosity by deféoit every job submitted. Instead, jobs
can be resubmitted with increasing JEM-verbosity whenrersbould be inspected in more detail.

JEM can be obtained from the project website and used otitesbox with only a minimum
of configuration needed. The integration into Ganga is ggadduction-ready, but is not included
in Ganga’s releases yet.

4.2 Current Development

JEM is still being developed further. There are several-pidgects being worked on, lever-
aging JEMs functionality and further enriching the monitgrdata that can be gathered by using
JEM.

Environment monitor JEM already monitors local environment metrics on the workade
the job is launched on (see 2.4), but the status of the grid@ment beyond a single machine
often can give additional, useful hints at possible errarditions and reasons for job failures. For
example, if necessary grid services (information servie@kload manager, local storage element)
are not available or unreachable by the grid job, it failsM3Eew environment monitor attempts
to supervise just this kind of environment data by peridtigaolling needed services and assuring
the infrastructure is in a usable state.

JEMpole, the Post-Mortem Log Explorer Monitoring information received in real-time on the
submission machine or, via the output sandbox if a job finlsieea valuable source for analysing
job failures. Often, however, the amount of information & easy to filter for the user, and the

6The C-Tracer code still is being optimized

10



Job centric monitoring in the LCG

Tim Minchen

[ JEMpole - The

Eile Edit View Seftings Help

spstmortem log ex

10:51:16.333

e

10:51:16.534
2 call Graph

HelloAlg.cxx:146

StatusCode HelloAlg::execute

HelloAlg. cxx:162

StatusCode.h:104

StatusCode HelloAlg::beg

wvoid StatusCode::StatusCode

StatusCode HelloAlg::beginRu...

(% 10:51:16.373 HelloAlg.cxx:167 StatusCode HelloAlg::beginRun StatusCode.h:104 void StatusCode::StatusCode return StatusCode::SUCCESS:  {'this':('const StatusCode*'
m¥ 10:51:16.373 HelloAlg.cxx:167 wvoid StatusCode::StatusCode return StatusCode::SUCCESS;
my 10:51:16.374 777:-2 StatusCode HelloAlg::beginRun

10:51:16.493 777 m HelloAlg.cxoc:115 StatusCode HelloAlg::execute StatusCode HelloAlg::executel...

return StatusCode::SUCCESS;
return StatusCode::SUCCESS;

=G, ] L.ggl WE
Code Vicinity Filter
@ CAlEr [qon16n % & # % ¢ % % 2.4 % 4 44 & £ £ 4 8 £ E b k3 E 4 [«]|j - Filter mode &
O calles | 200161 () Hide matching Timestamp is after or equal to 05.01.2009 10:51:13.293
> o016l = 7 Timestamp is before 05.01.2009 10:51:21.713
000153 (@) Show only matching
et ) Disable filter
KR |
L. |ﬁmestamp | File | Frame | called File / Exception | Called Frame / Exception Reason | Code / Command | Arguments / Return Value [
[y LU.OI.10.007  CaUUINENGIET IS ot CaLuSCOtE
my 10:51:13.888 ToolHandle.h:121 StatusCode GaudiHandle<iHelloT...
my 10:51:13.898 HelloAlg.cxx:103 StatusCode ToolHandle<IHelloToo... if { m_myPublicHelloTool.retrie...
(™ 10:51:13.981 HelloAlg.cxx:103 StatusCode HelloAlg::initialize StatusCode.h:131 bool StatusCode::isFailure if { m_myPublicHelloTool.retrie... {'this:{'const const Statust
=y 10:51:13.982 HelloAlg.cxx:103 bool StatusCode::isFailure if { m_myPublicHelloTool retrie...
(31 10:51:14.048 HelloAlg.coc107 StatusCode HelloAlg::initialize GaudiHandle.h:38 const string (= basic_string=ch... log << MSG:INFO << m_myP... {'this"('const const Gaudik
10:51:14.049 HelloAlg.cxx:107 censt string (= basic_string=cha... log == MSG:INFO == m_myP...
(%) 10:51:14.134 HelleAlg.cxx:110 StatusCode HelloAlg::initialize StatusCode.h:104 wveid StatusCode::StatusCode return StatusCode::SUCCESS;  {'this":('const StatusCode*'
my 10:51:14.135 HelloAlg.cxx:110 wvoid StatusCode::StatusCode return StatusCode::SUCCESS;
my 10:51:14.181 777:-2 StatusCode HelloAlg::initialize
~

{'this"{'const HelloAlg™, ‘0]

{'this':('const Helloalg™, 0x|
{'this":('const StatusCode*’

| B5 StatusCode HelloAlg::execute StatusCode HelloAlg::execute(... {'this"('const He\loAIg".‘G;q
rfacelD::operator== | ‘ bool InterfaceiD::fullMatch ‘ | long unsigned int lnn} 104 void StatusCode::StatusCode return StatusCode::SUCCESS;  {'this":({'const StatusCode*'
E ] return StatusCode::SUCCESS;
10:51:13.493 4 S | EE
P ms StatusCode HelloAlg:execute StatusCode HelloAlg::execute(... {'this:('const HelloAlg™,'0x~ |
- : R \ G
| Arguments
Type | Name Value
10:51:13.593 : -
@ const HelloAlg™ this 0x09b06220 [= <HelloAlg instance
bool m_myBool 1
double m_myDouble 3.14159
int m_mylint 42
int m_runCount 0
10:51:13.693 B map<std::basic_string<char, ... m_myDict <map=std::basic_string=char, std::
= TeolHandle<iHelloTool> m_myPrivateHelloTool <ToolHandle<IHelloTool> instance &
w ServiceHandle<|ToolSve> m_pToolSvec <ServiceHandle<IToolSve> instance
IMessagesve™ m_pMessagesvc 0x0b03771c [= <IMessagesvc instg

ISveLocator m_pSvclLocator
® ToolHandle<iHelloTool> m_myPublicHelloTool
vector<std::basic_string=char... m_myStringVec
vector<std:-pair<double, dou.. m_myTable
vector<std::vector<double, st... m_myMatrix

=1 |

0x0ad798b4 [= <iSvcLocator instar
<ToolHandle<iHelloTool> instance @
<vector<std::basic_string<char, std|
<vector<std::pair<double, double>
<vector=std::vector=double, std::al

1)

10:51:13.793|

Figure 5: JEMpole main window: Color-coded event list (center), caidaity view (top left), filter criteria
(top right), function call graph (bottom left) and functiargument browser (bottom right).

search for specific entries pointing to the reason for a problith the job is still a challenging
task. The newly developed log viewer, JEMpole (fig. 5), afitsmo simplify such searches. It
allows to browse JEMs logfiles in a color-coded, clearlyaged list that can be sorted and filtered
by several criteria. Multiple filters can be linked by boalexpressions, and can contain regular
expressions to make the filtering even more powerful. JEBpah view function arguments or
local scope variables, create a call-graph showing the flbexecution just before a job abort,
view a caller-report showing what functions call what otherctions (and how often) and view
the source code around the location of events (calls, retaxceptions) if available. All these
functions help in understanding what exactly happeneddmutier code at a specific point in time.

C-Tracer Without JEM, all of a grid job’s run during the job state RUNING is a blind spot for

the user. Submission- and middleware-errors are repostadch, but errors in the job’s run itself
only give sparse error messages, or nothing at all. JEM, tipnaw, reports what happens during
running state, as long as the job processes (bash) scrightsy#imon programs. The physics data
analysis itself, however, most often consists of compiledities (C/C++ shared libraries loaded

11



Job centric monitoring in the LCG Tim Minchen

and called by the python launcher script). This holds for $&Min place of action, ATLAS data
analysis. With the new C-Tracer library developed spedifidar JEM, the blind spot is narrowed
even more, as now the job’s actions are also reported froiderthe compiled user algorithm.
The C-Tracer logs function or method calls and correspanditurns in/from C or C++ code and
passes this information to JEM, including variable and peter values and types.

4.3 Outlook

There are several possibilities of future work concernig$/1§ development, some of them
already planned and scheduled as further projects (Mamter-PhD-Theses at the University of
Wuppertal). Among them are:

Evaluation and optimization of the data transfer JEM offers several different data transport
protocols to choose from, including plain HTTPS transpBAGMA and MonALISA[11]. Each
and every one of them has to be stress-tested for latencyhamaghput, as well as for network,
CPU and RAM usage at transmitter and receiver. With the imé&tion obtained in that way, a
preferred mode of transportation can be chosen and precoedign JEM.

Evaluation of the influence on job performance and throughpa Besides the resource con-
sumption mentioned in the previous paragraph, the perfocmanpact of JEM as a whole has to
be determined. Measurements are to be taken comparing tegaliaruntime with and without
JEM in different scenarios (With the C-Tracer and withouithviile system logging and without,
etc).

Full utilization of JEM data in GridXP ~ When the interface of JEM into GridXP (see 3.2) has
been implemented, GridXP itself has to be built upon, im@etimg a sophisticated rule set to use
the monitoring information provided by JEM to create meghiherror description and solution
suggestions in GridXP. On top of that, the usage of cuttingegechnology to classify errors by
their output and by JEM’s logging data is to be implemented @ridXP, for example by means
of neural networks and fuzzy logic.

References

[1] ATLAS Computing Group ATLAS Computing Technical Design Report
ATLAS-TDR-017, CERN-LHCC-2005-022
http://ww. atl as. ac. uk/ conp. ht m

[2] R. Brun, F. Rademaker&®OOT - An Object Oriented Data Analysis Framework
AIHENP conference, Laussanne, 1996.
http://root.cern.ch

[3] F. Brochu et al.Ganga: a tool for computational-task management and easgs&cto Grid resources
htt p://ganga. web. cern. ch/ ganga/ docurent s/ pdf / ganga_cpc09. pdf
http://ganga. web. cern. ch/ ganga

[4] D. Igdalov. Entwicklung eines Systems zur Analyse und Uberwachungedarbéitung von
Rechenanforderungen im LHC Computing-Grid
Diploma thesis, Fachhochschule Niederrhein, August 2005.

12



Job centric monitoring in the LCG Tim Minchen

[5] A. Hammad.Entwicklung eines Uberwachungssystems fiir verteilteed®seim LHC-Computing Grid
Master thesis, Fachhochschule Niederrhein, December.2005

[6] D. Igdalov, A. Hammad, S. Borovac, M. Mechtel, T. Mlnctetral. JEM, The Job Execution Monitor
http://ww. grid.uni-wippertal.de/grid/jns

[7] S. Borovac.A users guide to JEMv2
Bergische Universitat Wuppertal, 2007.

[8] T.HenR et al.GridXP, A grid centric expert system
http://ww. grid.uni-wippertal.de/grid/expertsystem

[9] T. HenR.Entwurf und Implementation eines Expertensystems fur @édskiibrkontrollsystem des
ATLAS-Pixeldetektors
PhD. thesis, Bergische Universitat Wuppertal, WUB-DIS 0@, 2008.

[10] The EGEE projectinformation and Monitoring Service (R-GMA) — System Sptifin
EGEE-JRA1-TEC-490223-R_GMA_SPECIFICATION-v2-0, Jub(2.

[11] The CERN MonALISA project groupMONitoring Agents using a Large Integrated Services
Architecture
http://nonalisa.cacr.caltech. edu

13



