
P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring for ATLAS jobs in the LHC
Computing Grid

Erich Ehses a, Torsten Harenberg b, Dennis Huning bd, Peter Mättig b,
Markus Mechtel b, Tim München ∗bd, Martin Rau a, Peer Ueberholz c, Nikolaus Wulff d

aFachhochschule Köln, Claudiusstr. 1, 50678 Köln, Germany
bBergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
cHochschule Niederrhein, Reinarzstraße 49, 47805 Krefeld,Germany
dFachhochschule Münster, Hüfferstraße 27, 48149 Münster, Germany

As the Large Hadron Collider (LHC) at CERN, Geneva, has begunoperation in September, the
large scale computing grid LCG (LHC Computing Grid) is meantto process and store the large
amount of data created in simulating, measuring and analyzing of particle physic experimental
data. Data acquired by ATLAS, one of the four big experimentsat the LHC, are analyzed using
compute jobs running on the grid and utilizing the ATLAS software framework ATHENA. The
analysis algorithms themselves are written in C++ by the physicists using Athena and the ROOT
toolkit.
Identifying the reason for a job failure (or even the occurance of the failure itself) in this context is
a tedious, repetitive and sometimes unfeasable task. Often, to deal with failures in the RUNNING
stage (as opposed to job submission failures or compilationerrors in the user algorithms), the job
is just being resubmitted. In a grid context, users are neverallowed to directly access the worker
nodes (WNs) their jobs run on. So, debugging of a user job interactively is not possible. It is even
more complicated because the output-sandbox, which contains the jobs’ output and error logs,
usually is discarded by the grid middleware if the job failed. So, valuable information that could
aid in finding the reason of failure is lost. These issues result in high job failure rates and less
than optimal resource usage.
As part of the High Energy Particle Physics Community Grid project (HEPCG) of the German D-
Grid Initiave, the University of Wuppertal has developed the Job Execution Monitor (JEM). JEM
helps finding reasons for job failures by two means: it periodically provides vital worker node
system data and collects job run-time monitoring data. By performing a supervised line-by-line
execution of the user job, this data is gathered. JEM provides new possibilities to find problems
in largely distributed computing grids and to analyze theseproblems in nearly real-time.
The monitoring information is presented to the user almost instantaneously for realtime analysis
and, for completed jobs, additionally stored in the jobs’ output sandbox for deeper post-mortem
analysis. As a first step, JEM is being integrated into ATLAS’and LHCb’s grid user interface
Ganga. Jobs submitted in this way are monitored transparently, requiring no additional effort by
the user.

In this work, the functionality of and the concepts behind JEM are presented together with exam-

ples of typical problems that can easily be resolved using it. Furthermore, we present an ongoing

work of classifying problems automatically using expert systems.

XII International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
November 3-7, 2008

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

This work is divided into four sections. In the first section,the motivation for the development of
a user centric job monitoring tool, regarding the LHC experiment ATLAS as context of the jobs to
be monitored, will be described. The second section covers the functionality and concepts behind
JEM as well as a short description of some typical failures together with their reasons occuring in
the aforementioned context which can be found using it. After the proposed interoperation between
JEM and a grid centric expert system (GridXP), also developed at the University of Wuppertal, is
presented in section three, we conclude with an outlook of things being developed at the moment
and opportunities for future work.

1. Motivation

1.1 Grid jobs in the ATLAS experiment

In the ATLAS experiment, grid jobs usually consist of

• an algorithm doing calculations on existing data or data generation using the ATLAS soft-
ware framework ATHENA[1],

• code setting up ATHENA and the environment,

• ATHENA runtime code providing services like data I/O, logging and bookkeeping,

• a short launcher application, usually implemented as shell-script,

• and of course the data that is being processed.

The user algorithm itself is implemented in C++ and utilizeslibrary functions provided by ATHENA
and mathematical libraries such as ROOT[2]. It is this code that does the actual physics work: the
generation of physics data (e.g. Monte Carlo or detector simulation), the conversion of this data
into other formats for further processing, or the analysis of such data. The ATHENA environ-
ment is set up by a collection of shell-scripts. Their main purpose is to set up binary search paths,
data sources and other runtime information. ATHENA itself consists of several modules written in
Python which prepare the analysis1 data and repeatedly call the user algorithm with data fragments
(e.g. single physic event data). For this, the user algorithm is loaded beforehand as a shared library
by ATHENA and used by means of inter-language-calls by the Python interpreter. The actual grid
job typically is a short launcher script that loads the ATHENA environment-setup scripts and trig-
gers execution of ATHENA, either written by the user or automatically created by a job submission
and management tool like Ganga[3].

To summarize, ATLAS grid jobs are generated or user-writtenshell scripts running a frame-
work of Python scripts that use algorithms from C++ shared libraries. The fact that this application
model consists of several layers depending on each other, implemented by different groups of
developers using different programming languages, already implies a number of possible failure
conditions and errors. On top of that, one observes the usualerrors contained in all human-written
software (invalid data and memory access, floating point exceptions, logical errors, etc) and errors

∗Speaker.
1or simulation, data generation, conversion, etc.

2



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

caused by the context, that is, the grid (submission errors,failures to query needed local and re-
mote services, environment errors and so on). Hence, there is a wealth of failure possibilities from
which only a small subset is under control of the user. These errors are classified in the next sec-
tion, considering the possibilities to determine the failure reason with the help of the job monitoring
software.

1.2 Job failures

For grid jobs, there are two classes of job failures to distinguish in respect to the possibilities of
the user who has to determine the cause of the error. They can be seperated by the status assigned
to it by the grid middleware after execution. To avoid confusion, we will explicitely seperate the
job into its “grid-part” and the “physics-part” in the following discussion. One has to be aware that
both parts combined form each job.

• Finished
If the grid job successfully leaves the state RUNNING, it is being assigned the state FIN-
ISHED by the grid middleware. Successful in this respect means there was no middleware- or
environment-specific cause of job failure. Nevertheless, the physics job may have failed. The
job script terminating with a non-zero exit code most often means the physics job didn’t com-
plete successfully. Even so, its grid job status will be set to FINISHED instead of FAILED.
Moreover, even with an exit code of zero, the physics job may not have produced the desired
output (logical failure). The output of the job (stdout and stderr streams containing all output
of both the grid part and the physics part of the job) is usually transmitted to the user via
the job’s output sandbox, an archive packed by the grid middleware after the job finished,
containing this output as well as any data file created by the job (assuming they are correctly
declared in the job’s description). If the job exits with a nonzero exit code, these files are the
only data the user can analyze to determine the cause of the failure. Errors during ATHENAs
environment setup, for example, usually result in messageswritten by the remote shell into
stderr, whereas errors in ATHENA itself (meaning in its Python scripts, not during the inter-
language-calls into the user algorithm) usually result in stacktrace information also written
to stderr. Fatal errors during the user algorithm, that is, errors resulting in the abortion of
the current inter-language-call (e.g. floating point exceptions or access violations) result in
sparse stderr output from the user algorithm and, additionally, in a stacktrace generated by an
error handler triggered by ATHENA, containing the last stack frames of the user algorithm
(see fig. 1).

• Failed or Aborted
If the grid job fails for grid specific reasons, that means thegrid middleware assigns the
status FAILED to it, the output sandbox usually is discardedand stderr is not available. This
also holds for jobs that got aborted by the user, for example because the job seems to run
indefinitely and never finishes. In this case, the job status is set to ABORTED.

Obviously, the user has little information to work with whenhis job fails. In the first class of
failures, the stderr output can be analyzed, but often it contains insufficient data to find the error
cause fast and efficiently. The data is either insufficient byitself or hidden in pages of irrelevant

3



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

error output created by the several layers of the application described in Sec. 1.1. In the second
class of failures, the only information the user has is that the job, in fact, failed. As a result, the
neccessity of a tool that monitors the job run is evident for second class failures, but also first class
failures can be resolved easier and faster if more information is available, and the information that
is available is structured in an efficient way. The followingsection presents our job monitoring
solution JEM that can be used to achieve these goals.

2. The Job Execution Monitor

2.1 Overview

The Job Execution Monitor[4, 5, 6] (JEM) is an application run in user space and submitted
with user jobs to grid computing elements (CEs), providing job status, job error and environment
data to the user in nearly real-time. During the run of the user job, vital system information on
the worker node (WN) the job was scheduled to run on, like CPU and memory usage and free disk
space in the job’s working directory and temporary directories, is gathered periodically. The scripts
the user job itself consists of2 are run in a supervised line-by-line mode, during which events like
function and method calls, returns from functions and methods, exceptions being raised, or shell
commands being executed are logged.

2.2 General Structure

JEM consists of two distinguished parts (fig. 2). The first component, JEM UI, is run on the
machine used to submit the monitored grid job3. It can be run as a stand-alone tool providing a

 Generating stack trace...
 0xf1891ecd in HelloAlg::execute() at ../src/HelloAlg.cxx:124 from /home/atlas029/globus-tmp.wn045.15463.0/https_3a_2f_2fglite-wms.physik.uni-wuppertal.de_3a9000_2fjQHgUAAydvsORZtl2S8oNw/work/InstallArea/i686-slc4-gcc34-opt/lib/libAthExHelloWorld.so
 0xf3021ef8 in Algorithm::sysExecute() + 0x98 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/GAUDI/v19r6p4-LCG54f/InstallArea/i686-slc4-gcc34-opt/lib/libGaudiKernel.so
 0xf24c208e in AthenaEventLoopMgr::executeAlgorithms() + 0x4e from /griddata/gridsoft/atlas/prod/releases/rel_14-2/AtlasCore/14.2.0/InstallArea/i686-slc4-gcc34-opt/lib/libAthenaServices.so
 0xf24c5a9c in AthenaEventLoopMgr::executeEvent(void*) + 0xc6c from /griddata/gridsoft/atlas/prod/releases/rel_14-2/AtlasCore/14.2.0/InstallArea/i686-slc4-gcc34-opt/lib/libAthenaServices.so
 0xf24c799b in AthenaEventLoopMgr::nextEvent(int) + 0x33b from\ /griddata/gridsoft/atlas/prod/releases/rel_14-2/AtlasCore/14.2.0/InstallArea/i686-slc4-gcc34-opt/lib/libAthenaServices.so
 0xf24c1b17 in AthenaEventLoopMgr::executeRun(int) + 0x17 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/AtlasCore/14.2.0/InstallArea/i686-slc4-gcc34-opt/lib/libAthenaServices.so
 0xf1cf1974 in ApplicationMgr::executeRun(int) + 0x234 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/GAUDI/v19r6p4-LCG54f/InstallArea/i686-slc4-gcc34-opt/lib/libGaudiSvc.so
 0xf2cf0d34 in <unknown> from /griddata/gridsoft/atlas/prod/releases/rel_14-2/GAUDI/v19r6p4-LCG54f/InstallArea/i686-slc4-gcc34-opt/lib/libGaudiKernelDict.so
 0xf379d25c in ROOT::Cintex::Method_stub_with_context(ROOT::Cintex::StubContext_t*, G__value*, char const*, G__param*, int) + 0x44 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/root/5.18.00a/slc4_ia32_gcc34/root/lib/libCintex.so
 0x0aa725de in <unknown function>
 0xf4cd6f14 in Cint::G__CallFunc::Execute(void*) + 0x94 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/LCGCMT/LCGCMT_54f/InstallArea/i686-slc4-gcc34-opt/lib/libCint.so
 0xf59f291b in PyROOT::TRootObjectByValueExecutor::Execute(Cint::G__CallFunc*, void*) + 0x23 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/root/5.18.00a/slc4_ia32_gcc34/root/lib/libPyROOT.so
 0xf59f793a in PyROOT::TMethodHolder<PyROOT::TScopeAdapter, PyROOT::TMemberAdapter>::Execute(void*) + 0x196 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/root/5.18.00a/slc4_ia32_gcc34/root/lib/libPyROOT.so
 0xf59facb3 in PyROOT::TMethodHolder<PyROOT::TScopeAdapter, PyROOT::TMemberAdapter>::operator()(PyROOT::ObjectProxy*, _object*, _object*) + 0xf3 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/root/5.18.00a/slc4_ia32_gcc34/root/lib/libPyROOT.so
 0xf59ff588 in PyROOT::(anonymous namespace)::mp_call(PyROOT::MethodProxy*, _object*, _object*) + 0x3b0 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/root/5.18.00a/slc4_ia32_gcc34/root/lib/libPyROOT.so
 0xf7e4369c in PyObject_Call at Objects/abstract.c:1861 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7eb7654 in PyEval_EvalFrameEx at Python/ceval.c:3777 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7ebd865 in PyEval_EvalCodeEx at Python/ceval.c:2833 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7ebb76d in PyEval_EvalFrameEx at Python/ceval.c:3661 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7ebd865 in PyEval_EvalCodeEx at Python/ceval.c:2833 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7ebd9f3 in PyEval_EvalCode at Python/ceval.c:500 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7edd6a0 in PyRun_FileExFlags at Python/pythonrun.c:1264 from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 0xf7eb1b18 in <unknown> from /griddata/gridsoft/atlas/prod/releases/rel_14-2/sw/lcg/external/Python/2.5/slc4_ia32_gcc34/lib/libpython2.5.so.1.0
 ...

Figure 1: ATHENA-generated stacktrace of a crash in the user algorithm.

2bash- or python-scripts, see sec. 2.3
3Typically; However, the JEM UI can be run on any machine.

4



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

Figure 2: General structure of JEM[7].

simplified job submission user interface, as command-line tool only decorating a usual grid job
with the monitoring functionality before submitting, or asa plug-in into ATLAS’ job management
solution Ganga, adding the job monitoring benefits transparently to Ganga’s job submission func-
tionality. The latter is the preferred mode of execution of JEM, requiring no additonal effort by the
user besides setting a monitoring flag in the job’s description in Ganga.

The second component, JEM WN, is a job wrapper that is submitted to the worker node with
the user job and augmenting it with the monitoring functionality. The user job is encapsulated in
JEM WN and is run on the WN after JEM initialized and started its data taking and transmission
subsystems which will be described below. While the user jobis run line by line and environment
data is taken periodically, all gathered monitoring data istransmitted from JEM WN to JEM UI in
nearly real-time.

Both parts of JEM are mainly implemented in python, having only a minimal set of software
dependencies easily provided by typical grid CEs. The transmission of monitoring data from the
worker node script to the JEM UI application or -plugin is performed by one of a set of communi-
cation modes (named “valves”) using different communication backends provided by JEM. There
is another ongoing work evaluating the different valves andcomparing their applicability for JEMs
purpose in terms of data throughput and caused system load onthe WN and the UI machines.

5



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

2.3 Script monitors

At present, JEM is able to monitor bash- and python-scripts.Calls to other scripts automat-
ically cause the script monitor to fork and monitor the childscript as well (if it is a monitorable
script as well). The following information is logged duringthe supervised script execution by JEM
WN (for every logged event, besides the data listed in the following paragraphs, the timestamp of
the event and the type of script - bash, python - are gathered):

• function calls Whenever a (python) function or class-method is called, thecalled and call-
ing frame are logged with filename, frame name and line number. The arguments passed to
the called function are logged as well including a (possiblyshortened) string representation
of their value.

• function returns If the python script execution leaves a function/method, the left frame
with file and line number as well as the return value (string representation of the value) is
logged.

• run commands In bash scripts, the called shell commands, run applications and syntactical
constructs (loops, conditions, ...) are logged with their respective exit code.

• exceptions Python exceptions are logged with the causing frame (frame name, line num-
ber, file name), exception class name and reason (informative string). Furthermore, the values
of local variables of the scope where the exception happenedare gathered.

The amount of this data that is actually logged can be configured by several criteria to allow the
reduction of traffic and load on the sending (WN) and receiving (UI) sides. These criteria include
a loglevel setting reducing the overall verbosity of the script monitor, blacklists to skip whole
scripts, exception type filters and, as last resort, the discarding of data at random if too much data
is generated. There exists an ongoing additional work to make the data reduction more intelligent
and expedient.

2.4 System monitor

The system resource monitor (also called “Watchdog”) periodically4 gathers the following
monitoring data on the WN:

• CPU usage / system load

• Memory consumption / free memory

• Free disk space in the job’s working directory and temp (scratch) space

• The hostname of the worker node

• The point in time this data was taken at

4The interval can be configured inside JEM

6



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

More often than not, this data is very useful to determine thereason for a job failure that otherwise
presents itself the same way a coding error or (grid-) environment error does. On the UI side,
the watchdog data can be presented to the user in form of graphs (e.g. CPU usage over time), to
visualize trends and to identify temporary problems on the WN that possibly have caused the job
failure.

2.5 Examples

The following examples for typical failure scenarios in ATHENA grid jobs can be resolved by
using JEM. The failed job is described, the information gathered by JEM in respect to the failures
is shown and the therefor possible resulting interpretation by the user is given.

Log file exceeding disk space If the log file written by the grid job heads out, exceeding the
available disk space on the worker node, the job cannot continue to run. Aditionally, the middle-
ware stores information in the very same directory and will not be able to finish and write the job
information back. A typical error that will be presented to the user in this case is shown in fig. 3.

The job failure caused by the unsuccessful attempt to appendto the job’s log file is nearly
impossible to detect without a real-time job monitoring facility like JEM, because for this failure
reason, the middleware instantly aborts the job and the affected job directory is deleted by the batch
system. So, no further log output besides status message shown in fig. 3 is available to the user,
and this message clearly doesn’t point at a disk space problem.

By using JEM, the amount of available disk space in the working directory of the job is
recorded and can be presented to the user at regular intervals already during the job run. By com-
paring several values, a trend can be deduced, that may advert to an imminent job failure caused by
exceeding of disk space.

Figure 3: Example of a grid job whose log file size exceeds the availabledisk space on the worker node
(grid job status as reported by the middleware is shown here).

7



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

Exceeding the wall time limit Grid jobs are not permitted to run indefinitely on the worker node.
Computing elements typically offer several grid job queuesproviding different limits of valid job
run times. The user has to define an estimate about the runtimeof a job in the job definition file.

If this estimate is too low, jobs are killed by the batch system and a signal (SIGUSR1 and later
SIGUSR2) is sent to the job. Due to the complexity of the software framework, the signals may be
catched and the job is killed in a hard matter, obfuscating the real failure reason (Wall time limit
exceeded), or the job simply behaves unexpectedly. Using JEM, the signals and their source can be
clearly identified5, without the need for the user to code additional signal handlers.

ATHENA version mismatch Updates to the ATHENA software framework are released on a
regular basis. One distinguishes between major and minor releases. Usually, code and data files
are compatible between different minor releases while theycannot be exchanged generally between
releases of different major release numbers.

However, as data taking is about to begin shortly, the developers try to unify at least the data
format, so that measured and simulated data can be read with different releases (or at the very least,
data created with one release should be usable with any newerrelease).

In some cases, however, code still may crash or behave otherwise unexpectedly if for example
a data file written with an older release is analysed with a newer one. These errors are hard to detect
(for example, the code runs forever without any meaningful output). In most cases some structures
which are accessed by the analysis code just are not filled or are filled with different (mismatching)
types of data.

Using JEM’s C-Tracer and JEMpole (see 4.2) the user has the possibility to analyse the data
structures read by the analysis code just before it crashes or at any other time during runtime and
compare it with the expectations made in the analysis code. This is often much easier than digging
into the very large repository of the ATHENA framework and tosearch for the changes made
between the two affected versions, especially if one has no idea which data structures cause the
problems. They can be easily identified with JEM.

3. GridXP

3.1 Overview

GridXP[8] is a rule-based expert system with a client/server architecture. It was developed at
the University of Wuppertal to aid users in finding the reasonfor job failures and to suggest steps
to take to handle the failure. GridXP and another expert system, the Pixel Advisor, developed to
help the ATLAS experiment’s operators at CERN to deal with error conditions in ATLAS’ Detector
Control System (DCS), are combined into UnifiedXP, a unified expert system framework sharing
core services, the visualisation and user interface[9].

If an error occured during the run of a grid job, a user must review almost all collected in-
formation about it to determine what was the problem. GridXPreviews all available information
automatically. If it recognises that a job finished with an error it visualises this and describes why
it has failed. Futhermore it gives one or more suggestions how the problem might be fixed. A

5This holds for signals in Python modules. To see signals in C/C++-Modules, the C-Tracer is needed (see sec. 4.2).

8



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

user can rate the advice “positive” if it was helpful or “negative” if it was unhelpful. This rating is
used as a quantifier over all advices, eventually changing their displayed order in the suggestions
list. Additionally, to aid in finding error reasons, it can combine all data fed into it about a WN to
determine if an error originates from the infrastructure orthe job itself.

3.2 Proposed interoperation of JEM and GridXP

At present, GridXP utilizes real-time job information provided by means of the Relational
Grid Monitoring Architecture, R-GMA[10]. Among the information gained in this way one can
find job state transitions like job start- and job end-events, but no detailed real-time monitoring
data. A direct interface from JEM into GridXP is planned, that will allow the GridXP ruleset to
fully take advantage of the power of monitoring provided by JEM. In case of a job failure, GridXP
will be able to consider not only the environment information (worker node system monitoring data
and grid status), but also the current execution status of the job, commands executed and possibly
exceptions thrown just before the failure. So, GridXP greatly benefits from JEMs input. On the
other hand, JEM also benefits from GridXPs possiblilities toautomatically interpret the monitoring
data and visualize the result to the user in a much more understandable way than by directly looking
at the logs.

Figure 4: Example of a athena job running reprocessing code with a generated data file written by an older
release. In this example, simply nothing happens after thisstep, so the user is lost.

9



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

4. Conclusion

4.1 Status of JEM

In its current form, JEM already can be used to monitor typical grid jobs to gather valuable
information about job failures or the current job status in nearly real-time. Errors with misleading
or hidden messages can be classified by the user more easily. Often, the real-time information
even predicts job failures about to occur, allowing to abortand re-submit the job with corrected or
optimized settings and parameters. This shortens the overall round-time needed for successful job
runs and leads to more efficient resource usage.

Naturally, the benefit of using a monitoring framework like JEM allowing to determine error
reasons has its price. The user job augmented with JEM needs longer as JEM’s functionality
causes a certain performance impact. The exact impact on runtime and resource usage is still to
be determined (but such efforts are already being taken, seesec. 4.3), but rough estimates can be
given here. The initialization of JEM on the worker node thatis performed before the user job
is launched needs a short constant time in the region of ten seconds. Functions in traced Python
modules take roughly 1.5 times longer to execute, dependingon their complexity (The longer the
functions themselves take the less the impact of JEM becomes). If C/C++-modules are traced as
well (see sec. 4.2) the performance impact during the user analysis (Interlanguage-calls into shared
libraries containing physics analysis code) at the moment6 increases by at least a factor of three, up
to some 10-fold impact if the user algorithm’s memory is inspected deeply. This means, of course,
that JEM cannot be just submitted in full verbosity by default for every job submitted. Instead, jobs
can be resubmitted with increasing JEM-verbosity when errors should be inspected in more detail.

JEM can be obtained from the project website and used out-of-the-box with only a minimum
of configuration needed. The integration into Ganga is nearly production-ready, but is not included
in Ganga’s releases yet.

4.2 Current Development

JEM is still being developed further. There are several side-projects being worked on, lever-
aging JEMs functionality and further enriching the monitoring data that can be gathered by using
JEM.

Environment monitor JEM already monitors local environment metrics on the worker node
the job is launched on (see 2.4), but the status of the grid environment beyond a single machine
often can give additional, useful hints at possible error conditions and reasons for job failures. For
example, if necessary grid services (information service,workload manager, local storage element)
are not available or unreachable by the grid job, it fails. JEMs new environment monitor attempts
to supervise just this kind of environment data by periodically polling needed services and assuring
the infrastructure is in a usable state.

JEMpole, the Post-Mortem Log Explorer Monitoring information received in real-time on the
submission machine or, via the output sandbox if a job finished, is a valuable source for analysing
job failures. Often, however, the amount of information is not easy to filter for the user, and the

6The C-Tracer code still is being optimized

10



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

Figure 5: JEMpole main window: Color-coded event list (center), codevicinity view (top left), filter criteria
(top right), function call graph (bottom left) and functionargument browser (bottom right).

search for specific entries pointing to the reason for a problem with the job is still a challenging
task. The newly developed log viewer, JEMpole (fig. 5), attempts to simplify such searches. It
allows to browse JEMs logfiles in a color-coded, clearly arranged list that can be sorted and filtered
by several criteria. Multiple filters can be linked by boolean expressions, and can contain regular
expressions to make the filtering even more powerful. JEMpole can view function arguments or
local scope variables, create a call-graph showing the flow of execution just before a job abort,
view a caller-report showing what functions call what otherfunctions (and how often) and view
the source code around the location of events (calls, returns, exceptions) if available. All these
functions help in understanding what exactly happened in the user code at a specific point in time.

C-Tracer Without JEM, all of a grid job’s run during the job state RUNNING is a blind spot for
the user. Submission- and middleware-errors are reported as such, but errors in the job’s run itself
only give sparse error messages, or nothing at all. JEM, up until now, reports what happens during
running state, as long as the job processes (bash) scripts and python programs. The physics data
analysis itself, however, most often consists of compiled binaries (C/C++ shared libraries loaded

11



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

and called by the python launcher script). This holds for JEMs main place of action, ATLAS data
analysis. With the new C-Tracer library developed specifically for JEM, the blind spot is narrowed
even more, as now the job’s actions are also reported from inside the compiled user algorithm.
The C-Tracer logs function or method calls and corresponding returns in/from C or C++ code and
passes this information to JEM, including variable and parameter values and types.

4.3 Outlook

There are several possibilities of future work concerning JEMs development, some of them
already planned and scheduled as further projects (Master-and PhD-Theses at the University of
Wuppertal). Among them are:

Evaluation and optimization of the data transfer JEM offers several different data transport
protocols to choose from, including plain HTTPS transport,R-GMA and MonALISA[11]. Each
and every one of them has to be stress-tested for latency and throughput, as well as for network,
CPU and RAM usage at transmitter and receiver. With the information obtained in that way, a
preferred mode of transportation can be chosen and preconfigured in JEM.

Evaluation of the influence on job performance and throughput Besides the resource con-
sumption mentioned in the previous paragraph, the performance impact of JEM as a whole has to
be determined. Measurements are to be taken comparing mediate job runtime with and without
JEM in different scenarios (With the C-Tracer and without, with file system logging and without,
etc).

Full utilization of JEM data in GridXP When the interface of JEM into GridXP (see 3.2) has
been implemented, GridXP itself has to be built upon, implementing a sophisticated rule set to use
the monitoring information provided by JEM to create meaningful error description and solution
suggestions in GridXP. On top of that, the usage of cutting edge technology to classify errors by
their output and by JEM’s logging data is to be implemented into GridXP, for example by means
of neural networks and fuzzy logic.

References

[1] ATLAS Computing Group.ATLAS Computing Technical Design Report.
ATLAS-TDR-017, CERN-LHCC-2005-022
http://www.atlas.ac.uk/comp.html

[2] R. Brun, F. Rademakers.ROOT - An Object Oriented Data Analysis Framework.
AIHENP conference, Laussanne, 1996.
http://root.cern.ch

[3] F. Brochu et al.Ganga: a tool for computational-task management and easy access to Grid resources.
http://ganga.web.cern.ch/ganga/documents/pdf/ganga_cpc09.pdf
http://ganga.web.cern.ch/ganga

[4] D. Igdalov. Entwicklung eines Systems zur Analyse und Überwachung der Verarbeitung von
Rechenanforderungen im LHC Computing-Grid.
Diploma thesis, Fachhochschule Niederrhein, August 2005.

12



P
o
S
(
A
C
A
T
0
8
)
0
4
2

Job centric monitoring in the LCG Tim München

[5] A. Hammad.Entwicklung eines Überwachungssystems für verteilte Prozesse im LHC-Computing Grid.
Master thesis, Fachhochschule Niederrhein, December 2005.

[6] D. Igdalov, A. Hammad, S. Borovac, M. Mechtel, T. Münchenet al. JEM, The Job Execution Monitor.
http://www.grid.uni-wuppertal.de/grid/jms

[7] S. Borovac.A users guide to JEMv2.
Bergische Universität Wuppertal, 2007.

[8] T. Henß et al.GridXP, A grid centric expert system.
http://www.grid.uni-wuppertal.de/grid/expertsystem

[9] T. Henß.Entwurf und Implementation eines Expertensystems für das Detektorkontrollsystem des
ATLAS-Pixeldetektors.
PhD. thesis, Bergische Universität Wuppertal, WUB-DIS 2008-08, 2008.

[10] The EGEE project.Information and Monitoring Service (R-GMA) – System Specification.
EGEE-JRA1-TEC-490223-R_GMA_SPECIFICATION-v2-0, Juli 2004.

[11] The CERN MonALISA project group.MONitoring Agents using a Large Integrated Services
Architecture.
http://monalisa.cacr.caltech.edu

13


