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Multivariate classification methods based on machine learning techniques play a fundamental

role in today’s high-energy physics analyses. In a time of ever larger datasets with an ever smaller

signal fraction it becomes increasingly important to use all the features of signal and background

that are present. Not only the one dimensional variable projections of the signal must be evaluated

against the background, in particular the information present in the variable correlations must

be explored. The possible complexities of the data distributed in a high-dimensional space are

difficult to disentangle manually and without the help of automata. TMVA is a toolkit which

implements a large variety of multivariate classification algorithms. TMVA provides a framework

to simultaneously train and evaluate any chosen set of classifiers, and giving means to compare

the performance on any dataset for any given problem.
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1. Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a variety of sophisticated multivariate
classification techniques, together with a framework for simultaneous classifier training, evalua-
tion, and performance comparison. TMVA is integrated in the ROOT framework [1], making use
of its data storing architecture, its mathematical library, and its function evaluation and histogram-
ming capabilities. A large number of classifiers, ranging from simple rectangular cut optimization
and projective likelihood estimators, over linear and non-linear multi-dimensional discriminants to
more recent developments like boosted decision trees, rule fitting and support vector machines is
implemented in TMVA.

An overview about the TMVA package and the implemented classifiers was presented at the
2007 conference for advanced computing and analysis techniques in physics research [2]. There
the following classifiers were shown

• rectangular cut optimization,

• projective likelihood estimation,

• multi-dimensional likelihood estimation (PDE range-search and k-NN),

• linear and nonlinear discriminant analysis (H-Matrix, Fisher, FDA),

• artificial neural networks, with three different implementations,

• support vector machine,

• boosted and bagged decision trees, and

• predictive learning via rule ensembles.

A more detailed description of all classifiers is available at our website [4] and also given in
the TMVA Users Guide [3]. The users guide includes an introduction into theunderlying principle
of each classifier, the available tuning options, as well as the advantages and disadvantages with
respect to the particular properties of the data samples.

After two years of development of TMVA and acquiring a large user community it became
clear that a number of desired features were not possible with the existing framework. It was
agreed upon to rewrite large parts of the framework as prerequisite. Whilemaintaining all existing
functionality of the TMVA package, the new version of TMVA will contain the following features:

• Data regression

• Multi-class categorization

• Automated classifier tuning and validation using cross-validation methods

• Boosting and bagging as a generic feature of all classifier

• Composite classifiers for parallel but independent training of differentphase space regions
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• Combined transformation of input data

• Multi threaded minimization and classifier training

In addition, a new likelihood estimator will be available, PDEFoam. As all other PDE clas-
sifiers, it provides a multi-dimensional probability density, but uses the novel TFoam method of
ROOT for variable space partitioning.

2. Data Regression

Unlike data classification, where events are discretely categorized, data regression denotes the
possibility of a classifier to predict the value of a variable. The predicted variable, denoted as the
regression target in TMVA, can be a single variable or a vector of variables.

Classification R
N 7→ R

Nx 7→ {1,2, . . . ,Nc}

Regression R
N 7→ R

Nr

HereN is the dimension of the input variable space,Nc the number of classes, andNr the dimension
of the regression target space. If the classifier is used to distinguish between signal and background
(or a number of classesNc), the result of the mapping7→ RNx needs to be further used as input into
the final classification decision. In case of regression analysis, the output of the mapping7→ RNr

provides directly the prediction for the target variable. In this case, the classifier tries to describe the
functional dependence of the target variable on the set of input variables. An often given example
in high energy physics is the prediction of the cluster energy correction based on particle type,
energy, and detector region.

Similar to the supervised classification training, regression training requiresthe specification
of a training target. This can be a single variable or a list of variables. For most classifiers, regres-
sion training happens in the same way as classification training. Event weightscan also be applied
in order to signify the event importance.

Neural network training is based on minimizing the error function that is the weighted sum
of the deviation of the training target from the network output. One-dimensional and multi-
dimensional probability density estimators predict the target value of an evaluation event based
on the target values of the training events in the vicinity of the evaluation event.In that way they do
not describe the signal probability for a given point in the phase space,but contain the most likely
target value by averaging over the training sample in that phase space region.

In the current version, regression is implemented for the linear and functional discriminant,
the support vector machine, the probability density estimators, and the neural networks. As an
example, a two dimensional regression problem is presented here:

ftarget= ax2 +by2

Figure 1 shows the performance evaluation plots for a number of classifiers for the given example.
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Figure 1: Performance evaluation plots for a number of classifiers on the given exampleftarget= 7x2 +9y2.
Shown is the deviation of the prediction from the target versus the target value. The following classifiers
are shown: Linear Discriminant, Support Vector Machine with Gaussian Kernel, Functional Discriminant,
Probability Density Estimator with Foam partitioning, Multi-layer Perceptron, Probability Density Estimator
with range search.

3. Multi Class Categorization

In its current version, TMVA classifies binary datasets, where events are of eithersignal or
backgroundtype. Given the fundamental idea behind TMVA and its design, it is a logical and
feasible extension to provide multi-target classification. The framework hasbeen extended such
that the user can specify data samples for multiple classes. The classifiers are being adapted to then
train on multiple classes and provide multi-class output. Some of the classifiers implemented in
TMVA support this naturally, like the neural network and the likelihood based approaches.

4. Automated Classifier Tuning

Many classifiers have parameters which can be tuned in order to improve theclassifier’s per-
formance. For some, this performance increase can be quite significant. For example, the boosted
decision tree classifier is quite robust and in most cases does not requireany tuning. Hence it is
often the method of choice, although it is not necessarily the best performing or best suitable for
a particular problem. One the other hand, the Support Vector Machine is proven to be well per-
forming, but its behavior is quite sensitive to the choice of training parameters. Providing means to
determine the best set of training parameters will help to optimize the classifier performance.

An example of classifier tuning is the protection against overtraining. Some classifiers, such
as neural networks, boosted decision trees, and probability density estimator methods, potentially
suffer from overtraining. Overtrained classifiers are too well adaptedto the particular features of
the training samples and hence loose there general applicability. The performance deteriorates,
unless protective action is taken and the corresponding training parameters are properly adjusted.
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For the boosted decision tree these parameters are the split criteria and pruning strength, for the
density estimators, it is the search range or the partition size, and for the neural network, a special
overtraining protection parameter can be set.

The basic principle of automated classifier tuning is the repeated execution ofthe training
and evaluation cycle on the training data. The test data remains unused at thisstage, since it is
necessary for the independent performance validation of the final classifier. Since classifier training
and evaluation should never be done on the same data, the training data sampleis partitioned into
subsamples. Out of these, each is retained once as evaluation sample, whiletraining is performed
on the other subsamples. This principle, called cross-validation or rotation estimation, has several
implementations. For TMVA we implemented theK-fold cross-validation, which works as follows.

The training data sample is divided intoK subsamplesTi , (i = 1, . . . ,K). For a given set of
training parametersα , the training is performed onK − 1 subsamplesTi , (i = 1, . . . ,k− 1,k+

1, . . . ,K), retaining thek-th subsampleTk for validation. This is repeatedK times, (k = 1, . . . ,K).
For each of theK resulting classifiersCk, the errorEk, (k = 1, . . . ,K), is calculated on the test
subsampleTk:

Ek(α) = E(Ck(·|α)|Tk) =
1
Nk

Nk

∑
j=1

wk
jL(xk

j ,Ck(x
k
j |α)),

whereNk is the size of the test sampleTk, xk
j andwk

j are thej-th event and its weight in that sample,
andL is the loss function. The loss function is a measure for the deviation of the prediction from
the truth and it presents the cost or the regret that is associated with the decision for a given event.
Its exact form depends on the problem that needs to be solved. The goal of automated tuning is to
find that set of training parameters for which the average error

Ē(α) =
1
K

K

∑
k=1

Ek(α)

is minimal. For this the space of classifier tuning parameters is scanned. With the optimal set of
classifier parameters,αopt, - for theseĒ(αopt) is smallest - the classifier is retrained on the complete
training data. The untouched test data is then used for validation and performance evaluation.

5. Generic Boosting

A decision tree is a series of splitting cuts that divide a data sample into ever smaller sets.
After the splitting, leafs are assigned either signal or background status.Decision trees are easy
to understand, but not very powerful classifiers. The performancecan improved when, instead
of using a single decision tree, a whole group of decision trees is combined.This group is built
up by adding new trees based on the performance of the already existing ones. Each new tree is
created from a data sample that emphasizes the classification mistakes made by previous trees. This
method is deployed by the boosted decision tree classifier.

In general, theboostingmethod produces a series of discriminators, which, combined, results
in a more powerful classifier. This principle, instead of being applied only todecision trees, can be
applied as a meta-algorithm around other learning algorithms as well. The advantages are

• an improved performance in phase space regions where classes overlap
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• classifier that are desensitized to the particularities of the training data, and an increase ro-
bustness in case of small training samples.

A number of variants of the boosting principle exist, of which TMVA implements themethod
of AdaBoost [5]. AdaBoost trains a classifierF rounds, each time re-weighting events to increase
the importance of those that were wrongly classified in the previous round.Finally, one can then
either use the last classifier retained in the series, or combine allF classifiers, as it is done for
TMVA’s boosted decision tree classifier

y(x) =
F

∑
i=1

log

(

1− f i
err

f i
err

)

Ci(x), with f i
err =

N
Nwrong

−1.

With the new framework TMVA provides the possibility to boost any classifier via AdaBoost,
and compare the performance with the not boosted version. A comparativecheck of the boosted
decision tree classifier and a decision tree classifier trained with the boostingframework has been
done. First tests have been performed with the boosting of the neural netclassifier. Likelihood
based classifiers and discriminators like Fisher can not be boosted. For likelihood estimators re-
weighting only distorts the probability density distribution.

6. Composite Classifiers

It is quite often desired to simultaneously train different classifiers on different phase space
regions of the same data sample, or to sequentially train different classifierson the combined output
of the previous step(s). A few examples from high energy physics are:

• Training of a neural network,e.g. for muon identification, differently in different regions
of the detector. A detector region would be identified by rapidityη and angleφ . These
variable can of course not be used for the training itself, since an imbalance in the signal and
background distribution in the training sample would cause a bias in the networkprediction.
The regions need to be trained separately, the composite classifier is designed to help with
the setup of this.

• A multi-class problem learned by a neural network can show an improvement,if a probability
density estimator is applied on the output. This also provides a likelihood that canbe used
as input to further treatment.

• Multi-particle event classification. It is conceivable to have a two step decision making
process. In a first step, classification input can be based on one or more particles, for instance
to identify leptons,Z, or Higgs boson candidates. In a second step, an event decision is
formed based on the output of the first step and on additional event data.In this way, particle
identification and searches for particle decay chains can be combined.

It should be noted that all these points can already be achieved, but need to be set up manually.
Composite classifiers are primarily designed for convenience. They are also less prone to user
errors. Inside the composite classifier, the training will still happen step-wise. It is not planned to
train a set of chained classifiers in a single process.
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7. Further Developments

With the PDEFoam classifier, a new probability density estimator has been introduced into
TMVA. It unites the advantages of a multi-dimensional likelihood, as stated in theNeyman-Pearson-
Lemma [6], with the speed advantages that a clever partitioning algorithm provides. The Foam
partitioning algorithm [7] combines training data events that lie in the same phase space region
and that show only a small variance in class type or regression target into asingle cell. This cell
is described by the class or target mean, the average event position, andthe total (weighted) num-
ber of contained events. The variance is a measure of the uniformity of the cell content. When
calculating the local probability density, extensive lookup and calculations are avoided, since the
representative means of the contributing cells are used. TMVA uses the Foam partitioning algo-
rithm that is implemented in the ROOT framework. A detailed description of the mechanism and
first performance studies are also presented in these conference proceedings [8].

For the efforts in physics analysis that are intensified at the dawn of LHC data taking, large
samples of data will be available for study using TMVA. The new features ofTMVA, such as
automated classifier tuning and generic boosting, will only add to the amount of needed computing
power. In these days, most desktop machines are equipped with multi-core CPU’s. Efforts in
TMVA are underway to provide multi-thread support for a number of the mostextensive computing
tasks, such as the Monte Carlo sampling and genetic algorithm minimization methods,the building
of decision trees, and the training of neural networks and support vector machines.

8. Conclusion

Over the years, TMVA has required a large user base. Over this time several new features
have been thought of and suggested by the developer and user community. With the last version of
TMVA 3 being stable and released with ROOT, an effort was started to redesign the framework and
implement a number of new features and concepts. Other improvements were also implemented.
Just to name a few, the Broyden-Fletcher-Goldfarb-Shanno method wasadded as MLP learning
algorithm alternative to back-propagation, the support vector machine and thek-nearest neighbor
density estimator were equipped with Gaussian kernels, and, for better release compatibility, xml
was chosen as the format for the classifier weight files. It is planned to release the new TMVA
4 version before summer 2009, with the new framework, regression, multi-class decision, generic
boosting, and PDEFoam fully functional.
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