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1. Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a variety of soptitsited multivariate
classification techniques, together with a framework for simultaneous obadséfining, evalua-
tion, and performance comparison. TMVA is integrated in the ROOT franiejtdr making use
of its data storing architecture, its mathematical library, and its function evahuatio histogram-
ming capabilities. A large number of classifiers, ranging from simple rectangut optimization
and projective likelihood estimators, over linear and non-linear multi-dimeabtbscriminants to
more recent developments like boosted decision trees, rule fitting andrsupptor machines is
implemented in TMVA.

An overview about the TMVA package and the implemented classifiers vesemied at the
2007 conference for advanced computing and analysis techniquegsitphesearch [2]. There
the following classifiers were shown

e rectangular cut optimization,

e projective likelihood estimation,

e multi-dimensional likelihood estimation (PDE range-search and k-NN),
e linear and nonlinear discriminant analysis (H-Matrix, Fisher, FDA),

o artificial neural networks, with three different implementations,

e support vector machine,

e boosted and bagged decision trees, and

e predictive learning via rule ensembles.

A more detailed description of all classifiers is available at our website [dpiso given in
the TMVA Users Guide [3]. The users guide includes an introduction intamigkerlying principle
of each classifier, the available tuning options, as well as the advantadebisadvantages with
respect to the particular properties of the data samples.

After two years of development of TMVA and acquiring a large user conitpinbecame
clear that a number of desired features were not possible with the existimgwork. It was
agreed upon to rewrite large parts of the framework as prerequisite. Whilgaining all existing
functionality of the TMVA package, the new version of TMVA will contain tlatléwing features:

e Data regression

e Multi-class categorization

Automated classifier tuning and validation using cross-validation methods

Boosting and bagging as a generic feature of all classifier

Composite classifiers for parallel but independent training of diffggease space regions
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e Combined transformation of input data

e Multi threaded minimization and classifier training

In addition, a new likelihood estimator will be available, PDEFoam. As all othe Elas-
sifiers, it provides a multi-dimensional probability density, but uses thel Adv@am method of
ROOT for variable space partitioning.

2. Data Regression

Unlike data classification, where events are discretely categorized ggggssion denotes the
possibility of a classifier to predict the value of a variable. The predictédhla, denoted as the
regression target in TMVA, can be a single variable or a vector of asab

Classification TN — N - 1,2, N}
Regression TN — N

HereN is the dimension of the input variable spallgthe number of classes, ahdthe dimension
of the regression target space. If the classifier is used to distinguiskd&esignal and background
(or a number of classés), the result of the mapping: 2™ needs to be further used as input into
the final classification decision. In case of regression analysis, thataftthe mapping— Z"™
provides directly the prediction for the target variable. In this case, tissifiler tries to describe the
functional dependence of the target variable on the set of input V@siaAn often given example
in high energy physics is the prediction of the cluster energy correctisadban particle type,
energy, and detector region.

Similar to the supervised classification training, regression training reghieespecification
of a training target. This can be a single variable or a list of variables. Fet ohssifiers, regres-
sion training happens in the same way as classification training. Event weaghtdso be applied
in order to signify the event importance.

Neural network training is based on minimizing the error function that is thehieigsum
of the deviation of the training target from the network output. One-dimeakiand multi-
dimensional probability density estimators predict the target value of anati@aiuevent based
on the target values of the training events in the vicinity of the evaluation evettiat way they do
not describe the signal probability for a given point in the phase spatepntain the most likely
target value by averaging over the training sample in that phase spame. reg

In the current version, regression is implemented for the linear and fuattitiscriminant,
the support vector machine, the probability density estimators, and thel metnaorks. As an
example, a two dimensional regression problem is presented here:

frarget= ax + by2

Figure 1 shows the performance evaluation plots for a number of clasg$dighe given example.
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Figure 1: Performance evaluation plots for a number of classifierhiergtven exampléiarget= 7x% + 9y2.
Shown is the deviation of the prediction from the target usrthe target value. The following classifiers
are shown: Linear Discriminant, Support Vector Machinehw@aussian Kernel, Functional Discriminant,
Probability Density Estimator with Foam partitioning, NMitlayer Perceptron, Probability Density Estimator
with range search.

3. Multi Class Categorization

In its current version, TMVA classifies binary datasets, where eveantsfaeithersignal or
backgroundtype. Given the fundamental idea behind TMVA and its design, it is a logiwdl a
feasible extension to provide multi-target classification. The frameworlbbas extended such
that the user can specify data samples for multiple classes. The classédibesray adapted to then
train on multiple classes and provide multi-class output. Some of the classifiersriamgkd in
TMVA support this naturally, like the neural network and the likelihood desggproaches.

4. Automated Classifier Tuning

Many classifiers have parameters which can be tuned in order to improe&atssier’s per-
formance. For some, this performance increase can be quite significargxdmple, the boosted
decision tree classifier is quite robust and in most cases does not raquitaning. Hence it is
often the method of choice, although it is not necessarily the best perpmnibest suitable for
a particular problem. One the other hand, the Support Vector Machinevsipto be well per-
forming, but its behavior is quite sensitive to the choice of training parametesgiding means to
determine the best set of training parameters will help to optimize the classifiermpance.

An example of classifier tuning is the protection against overtraining. Soraesifotais, such
as neural networks, boosted decision trees, and probability density Estimethods, potentially
suffer from overtraining. Overtrained classifiers are too well adajatélde particular features of
the training samples and hence loose there general applicability. Therparnfce deteriorates,
unless protective action is taken and the corresponding training pararaeggproperly adjusted.
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For the boosted decision tree these parameters are the split criteria ambmstrength, for the
density estimators, it is the search range or the partition size, and for thed network, a special
overtraining protection parameter can be set.

The basic principle of automated classifier tuning is the repeated executitie tfaining
and evaluation cycle on the training data. The test data remains unused sthgws since it is
necessary for the independent performance validation of the finalf@asSince classifier training
and evaluation should never be done on the same data, the training data isgpapitioned into
subsamples. Out of these, each is retained once as evaluation samplérairiig is performed
on the other subsamples. This principle, called cross-validation or rotatimnation, has several
implementations. For TMVA we implemented tKefold cross-validation, which works as follows.

The training data sample is divided inkbosubsampled;, (i = 1,...,K). For a given set of
training parametersr, the training is performed oK — 1 subsampleg;, (i =1,...,k— 1, k+
1,...,K), retaining thek-th subsampldy for validation. This is repeateld times, k= 1,...,K).
For each of thK resulting classifier€y, the errorky, (k= 1,...,K), is calculated on the test
subsampldy:

N
£4(0) = E(GU10)T) = 3 WiLGA b)),
2

whereN is the size of the test samplg, x'j‘ andvv‘f are thej-th event and its weight in that sample,
andL is the loss function. The loss function is a measure for the deviation of tlskcpom from
the truth and it presents the cost or the regret that is associated with teeddar a given event.
Its exact form depends on the problem that needs to be solved. Thefgagomated tuning is to
find that set of training parameters for which the average error

_ 1 K
E(@) = ¢ 3 E@)

is minimal. For this the space of classifier tuning parameters is scanned. Witptthmloset of

classifier parametere,py, - for theseE (aopt) is smallest - the classifier is retrained on the complete
training data. The untouched test data is then used for validation andrparfoe evaluation.

5. Generic Boosting

A decision tree is a series of splitting cuts that divide a data sample into ever issetle
After the splitting, leafs are assigned either signal or background stBiEsion trees are easy
to understand, but not very powerful classifiers. The performaaceimproved when, instead
of using a single decision tree, a whole group of decision trees is combiriasl.group is built
up by adding new trees based on the performance of the already exiatsg Bach new tree is
created from a data sample that emphasizes the classification mistakes meslgédayspirees. This
method is deployed by the boosted decision tree classifier.

In general, thdoostingmethod produces a series of discriminators, which, combined, results
in a more powerful classifier. This principle, instead of being applied ontietision trees, can be
applied as a meta-algorithm around other learning algorithms as well. Thetadea are

e an improved performance in phase space regions where classepoverla
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o classifier that are desensitized to the particularities of the training datanandraase ro-
bustness in case of small training samples.

A number of variants of the boosting principle exist, of which TMVA implementsnie¢hod
of AdaBoost [5]. AdaBoost trains a classifierrounds, each time re-weighting events to increase
the importance of those that were wrongly classified in the previous rdeindlly, one can then
either use the last classifier retained in the series, or combirfe ahssifiers, as it is done for
TMVA's boosted decision tree classifier

1- f(ierr

Y(X):iilog< i >ci(x), with  fl, = N

Nwrong

With the new framework TMVA provides the possibility to boost any classifieiAdaBoost,
and compare the performance with the not boosted version. A compachtiek of the boosted
decision tree classifier and a decision tree classifier trained with the bobostingwork has been
done. First tests have been performed with the boosting of the neurelasstfier. Likelihood
based classifiers and discriminators like Fisher can not be boosted. &ldrdidd estimators re-
weighting only distorts the probability density distribution.

1.

6. Composite Classifiers

It is quite often desired to simultaneously train different classifiers onrdiftephase space
regions of the same data sample, or to sequentially train different claseifidte combined output
of the previous step(s). A few examples from high energy physics are:

e Training of a neural networke.g. for muon identification, differently in different regions
of the detector. A detector region would be identified by rapiditand anglep. These
variable can of course not be used for the training itself, since an imtzalatice signal and
background distribution in the training sample would cause a bias in the nepnextiction.
The regions need to be trained separately, the composite classifier isetetigmelp with
the setup of this.

¢ A multi-class problem learned by a neural network can show an improveihgptobability
density estimator is applied on the output. This also provides a likelihood thdtecased
as input to further treatment.

e Multi-particle event classification. It is conceivable to have a two step idecimaking
process. In afirst step, classification input can be based on one epauticles, for instance
to identify leptons,Z, or Higgs boson candidates. In a second step, an event decision is
formed based on the output of the first step and on additional eventddités way, particle
identification and searches for particle decay chains can be combined.

It should be noted that all these points can already be achieved, liitolee set up manually.
Composite classifiers are primarily designed for convenience. Theyisirdegs prone to user
errors. Inside the composite classifier, the training will still happen step-wti$s not planned to
train a set of chained classifiers in a single process.
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7. Further Developments

With the PDEFoam classifier, a new probability density estimator has beentn&ddnto
TMVA. It unites the advantages of a multi-dimensional likelihood, as stated iN¢lyenan-Pearson-
Lemma [6], with the speed advantages that a clever partitioning algorithnidegovThe Foam
partitioning algorithm [7] combines training data events that lie in the same ppase segion
and that show only a small variance in class type or regression target sirtgla cell. This cell
is described by the class or target mean, the average event positicdheaothal (weighted) num-
ber of contained events. The variance is a measure of the uniformity oktheontent. When
calculating the local probability density, extensive lookup and calculationa\aided, since the
representative means of the contributing cells are used. TMVA uses #m partitioning algo-
rithm that is implemented in the ROOT framework. A detailed description of the mexrhand
first performance studies are also presented in these confereneegings [8].

For the efforts in physics analysis that are intensified at the dawn of L& tdking, large
samples of data will be available for study using TMVA. The new featureSM¥A, such as
automated classifier tuning and generic boosting, will only add to the amoueédéd computing
power. In these days, most desktop machines are equipped with multi-8dwts.CEfforts in
TMVA are underway to provide multi-thread support for a number of the mdsinsive computing
tasks, such as the Monte Carlo sampling and genetic algorithm minimization metietdsijlding
of decision trees, and the training of neural networks and suppadmeachines.

8. Conclusion

Over the years, TMVA has required a large user base. Over this timeatensv features
have been thought of and suggested by the developer and user comMittitihe last version of
TMVA 3 being stable and released with ROOT, an effort was started tsigrdthe framework and
implement a number of new features and concepts. Other improvementslsemmplemented.
Just to name a few, the Broyden-Fletcher-Goldfarb-Shanno methodduzsl as MLP learning
algorithm alternative to back-propagation, the support vector machohé¢hak-nearest neighbor
density estimator were equipped with Gaussian kernels, and, for bet@sealempatibility, xml
was chosen as the format for the classifier weight files. It is planneddase the new TMVA
4 version before summer 2009, with the new framework, regression, nags-decision, generic
boosting, and PDEFoam fully functional.
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