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Probability-Density Estimation (PDE) is a multivariatesclimination technique based on sam-
pling signal and background densities defined by event sssigim data or Monte-Carlo (MC)
simulations in a multi-dimensional phase space. In thiepage discuss an innovative improve-
ment of the PDE method that uses a self-adapting binningeddthdivide the multi-dimensional
phase space in a finite number of hyper-rectangles (cellee binned density information is
stored in binary trees, allowing for a very fast and memdfigient classification of events. The
implementation of the binning algorithm (PDE-Foam) is lthse the MC event-generation pack-
age Foam. We present performance results for represenatamples (toy models). The new
PDE-Foam shows improved classification capability for $mnaining samples and reduced clas-
sification time compared to a previous PDE implementatiaetdan range searching (PDE-RS).
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1. Probability-Density Estimation

Multivariate discrimination techniques are used in Higrefgy Physics to distinguish signal
from background events based on a set of measured chastictebiservables. Besides other so-
phisticated approaches, methods based on probabilitytderstimation (PDE) are widely used.
The information contained in the individual observablesdmbined into a single “discriminant”
variableD. The value ofD for a given event is based on the density of signal and baakgro
training events in the vicinity of its coordinate in the ninadimensional phase space. Applying
a cut onD allows to separate signal from background. A PDE methoddasaange-searching
(PDE-RS) [1] has been used successfully for classificatrablpms in higher-dimensional ob-
servable spaces and with arbitrary correlations betweeroliservables. Large samples of MC
simulated signal and background training events are stiordihary-search trees. An efficient
range-searching algorithm is used to sample the signal aokigbound densities in small multi-
dimensional boxes around the phase-space points to béielhsBDE-RS shows a discrimination
power similar to artifical neural networks (NNs) at largedgluced training time. It has the further
advantage of transparently handling the involved stagiktincertainties and has the size of the
sampling box as the only free parameter. An apparent limitatf PDE-RS, on the other hand,
is the fact that large signal- and background training sampte required to densely populate the
multi-dimensional phase space. Furthermore, these samgle to be accessible in the main mem-
ory of the computer used for the classification and the dlaaibn time scales with the number of
training events likely ass 0 Nirain - 109 Nirain.

2. Adaptive phase-space binning with Foam

In the following we discuss an alternative method to cakeuthe discriminanD(x) based on
histogrammed sampling of the phase space. Only the binnesitdénformation is preserved in
binary trees after the training phase, allowing for a vesf &md memory-efficient classification of
events.

A self-adaptive binning method, called “PDE-Foam” [2], ised to project the information
contained in the signal and background samples into a grid-difensional cells with non-
equidistant cell boundaries, called the “foam of cells”eTimplementation of PDE-Foam is based
on the MC event-generation package Foam [3] included innlad¢yais package ROOT [4] and has
been developed within the framework of the Toolkit for Muatiiate Data Analysis with ROOT
(TMVA) [5]. The foam is iteratively produced using a binasplit algorithm for the cells acting
on samplings of the input distribution within the cell boaniés. For each cell, random samplings
of the input distribution are projected onto tdeaxes and the relative variance of the projected
distributions is evaluated along the axes. The cell to bi¢ spkt and the corresponding division
axis and point for the split are selected as the ones for wihietsplitting leads to largest reduc-
tion in relative variance. After the split, the two new dateghcells become ’active’ cells and
the old mother cell remains in the binary tree, marked asgo@ivactive’. The final number of
active cells is a predefined free parameter and only limitethb amount of available computer
memory. In the context of PDE, Foam has been adapted suckhthaplitting of cells is based
on an input distribution that is sampled from MC training mgeusing the PDE-RS method. A



PDE-Foam - probability-density estimation using self-adapting phase-spacebinning  Dominik Dannheim

detailed description of the splitting algorithm can be fowtsewhere [2, 3]. The geometry of the
final foam reflects the distribution of the training samplbafe-space regions where the density is
approximately constant are combined in large cells, whilegions with large gradients in density
many small cells are created. Figure 1(a) shows a 2-dimeaisi®aussian-ring distributiorand
Fig. 1(b) shows a graphical representation of the resuftiagn with 2000 active cells. Each cell
contains the number of events from the input distributiolohging to the volume of the cell. The
foam consists of only a few large and sparsely populated aelhe center and corner regions of
the 2-dimensional plane, where the gradient of the Gausadial component of the distribution is
small. Close to the center of the ring, however, where thekadmponent of the distribution has
a steep gradient, the foam consists of many small and depsplylated cells.
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(a) Input density (b) Foam representation

Figure 1: (a) 2-dimensional Gaussian-ring distribution sampledf&00000 events. (b) Foam representa-
tion with 2000 active cells. The level of grey indicates thierg density inside the corresponding cell.

3. PDE-Foam parameters

A detailed description of the parameters steering the foaidup is given elsewhere [2]. In
the following, we give a brief overview of the main paramegeand their optimisation for reaching
optimal classification performance.

3.1 Size of sampling box

The size of the box used for the phase-space sampling is a corparameter of both the
PDE-Foam method and the standard PDE-RS method. In caseEH©Bm, the box size is only
relevant for the density sampling during the training phadale for PDE-RS the box size is only
used for the calculation of the discriminant during the sifésation phase. A larger box leads to
a reduced statistical uncertainty for small training sas@nd to smoother sampling. A smaller

1The definition of this Gaussian-ring distribution corresgs to the signal distribution of the example “Highly
Correlated Observables” defined and discussed in [1]. Thatsware distributed uniformly in the azimuth angle and
according to a Gauss distribution in the radial coordinat#) mean radius of 3 and width of 0.5.
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box on the other hand increases the sensitivity to staldtiectuations in the training samples, but
for sufficiently large training samples it will result in a neoprecise local estimate of the sampled
density.

Besides affecting the estimator performance, the box sihgeinces the training time in case
of PDE-Foam and the classification time in case of PDE-RSrdelabox increases the CPU time
during sampling, due to the larger number of nodes to be deresil in the binary search [1].

In general, higher dimensional problems require larger $in&s, due to the reduced average
number of events per box volume.

3.2 Number of cdlls

The target number of cells for the final foam is the main patamienpacting the accuracy of
the phase-space binning. An increased number of cells Iaagkneral to improved performance
provided that sufficiently large training samples are amd. However, for an increasing number
of cells with small training samples, the foam becomes maheerable to statistical fluctuations in
the training samples in particular in less populated regjifrthe phase space and the performance
might drop when further increasing the target number osgeNertraining). An increased number
of cells also leads to increased training time and higher amgroonsumption to store the foam
object.

Figure 2 shows the dependence of the esti- 0.900
mator performance as function of the number of
active cells for an example with five moderately 0.880 e,
correlated observables constructed from Gaus-
sian distributions for signal and backgrodnd / \
The two curves correspond to foams build-up 0.860
from small and large training samples, respec- /
tively. The small training sample consists of 0.840 ntrain=50k 1
5 x 10* signal and 5< 10* background events, ntrain=500k
whereas the large training sample contains 5 10° 10° 10° 10°
10° signal and 5« 10° background events. As number of cels
expected, the performance of the foams built
from the large training sample exceeds the oneFigure 2: Dependence of the estimator perfor-
of the foams based on the small training sample.Mance on the number of active foam cells.

In case of the large training sample, the perfor-

mance increases over a wide range of number of cells andegdtshmaximum for about 20000
cells, after which it drops due to the decrease in statlstiecision resulting in overtraining. For
the small training sample, the maximum is already reachedofims with approximately 5000
cells and the drop in performance afterwards is steeper.

ROC area

3.3 Minimum number of events Npin

The cell splitting algorithm assumes sufficient statistaxauracy of the sampled density dis-
tributions in all cells. This might not be guaranteed in cakemall training samples, where cell

2The definition of the distributions corresponds to the exarfigigh Dimensional Example” defined and discussed
in [1].
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splitting in scarcely populated phase-space regions eahtteovertraining effects. Therefore cells
should not be taken into account for further splitting, i thumber of training events contained
inside a cell is too small. An adjustable parametigy, has been implemented, which sets the
minimum number of events contained in any cell which is adexsd for further splitting. If the
number of events is beloNqin, the cell is not considered for further splitting. If no maedls are
available with sufficient number of events, the cell splijtstops, even if the target number of cells
is not yet reached. The cut &y, reduces the sensitivity to statistical fluctuations in ttaéning
samples and improves drastically the performance for smaflber of training events. The default
value ofNpin = 100 leads to a good performance for most cases studied. hecaombined with

a large target number of cells, as it limits the effective bemof cells sufficiently and thus avoids
overtraining even for small training-sample sizes.

4. Results

In the following we present a comparison of the performanog @PU-time consumption
between PDE-Foam and the standard PDE-RS method. Thesraseikhown for the example with
five moderately correlated observables. Other examples iwen studied and similar results were
obtained.

4.1 Performance

Figure 3 shows the estimator performance, SR E Foar 1000 calls

measured by the area under the ROC curve, as 0.900 | EBE-E%am 20000 cells. =4
function of the number of signal and background /W&’M

*

training events for foams of 1000 and 20000 ac-
tive cells, respectively. Note that the number of
training events corresponds to the indiviual sizes ,
of both the signal and background samples. The  0.800
actual total sample size is therefore twice the 4 ’
number of events shown on the x-axis. The per- 0.750
formance of the standard PDE-RS method is also 10° o' 10° 10°
. . number of training events

shown. Single foams were built for these exam-
ples with 2000 samplings, a sampling-box size
of 0.033 and a cut on the minimum number of Figure 3: Estimator performance as function of
events per cell oNpn = 100. In case of PDE- the number of 'Fraining events for foams with 1000

. . . . and 20000 active cells and for the standard PDE-
RS, the sampling-box size was 1.2 in units of the RS method.
original observables, corresponding to approxi-
mately 0.12 in normalised coordinates. For small trainiugsles up to approximately 1@vents,
the foams perform better than the standard PDE-RS methgaaraptly the geometry of the foams
is well adapted to the event distributions and the impliedraging of the event densities over the
cell volumes leads to better performance than the samplitigfixed box size performed by the
original PDE-RS method. For very small training samples @@ events and less, the foams
with 1000 and 20000 cells behave identically, since the cuthe@ minimum number of events
per cell of 100 limits the effective number of final cells toaue below 1000. For large training
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samples above 40000 events, the foam with 20000 cells pesfoetter than the one with 1000,
taking advantage of its finer granularity and the increasatiktical precision of the larger training

samples. However, for training-sample sizes of more tharl@® events, it does not quite reach
the performance of the standard PDE-RS method. For such sample sizes, the local density
estimates obtained with the PDE-RS method by counting sverihe vicinity of the events to be

classified are more precise than the density estimates fooumtiog events in foam cells of finite

granularity.

4.2 CPU time

For PDE-RS, the training time consists only of the creatibthe binary search trees used to
store the training samples. For PDE-Foam on the other haadradining time is dominated by the
repeated density sampling during the iterative build-ufheffoam structure. On a 2.33 GHz CPU,
the total training time for PDE-RS was found to be about 7 sdsdor a model with 5 observables
and training samples of £Gignal and background events each. The correspondingngaime
for PDE-Foam with 1000 (20000) active cells was about 4.D)hZinutes.

For PDE-Foam, the classification time depends mostly ondhaber of cells in the final foam
and is almost independent of the number of training everdsite standard PDE-RS method, on
the other hand, the classificiation time rises with the nunoiberaining events, due to the larger
size of the binary trees. With the training parameters desdrabove, the classification time for
PDE-RS, using signal and background testing samples>ol® events each, was found to be
about 40 minutes. The corresponding testing time for PD&mwith 1000 (20000) active cells
was only about 1.7 (2.7) minutes.

5. Conclusions

A new method for multivariate analysis, PDE-Foam, has beseldped. It combines the
adaptive binning algorithm of the Foam method so far onlyduse Monte-Carlo event genera-
tion with probability-density estimation based on rangareeing (PDE-RS). PDE-Foam has been
implemented within the TMVA package for multivariate ars$y The performance of PDE-Foam
exceeds the classification performance of PDE-RS for smaihg samples. Furthermore, it
leads to largely reduced classification time. The classifiogime is independent of the number
of training events. The main limitations of PDE-RS have ¢ffiete been overcome.
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