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Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sam-

pling signal and background densities defined by event samples from data or Monte-Carlo (MC)

simulations in a multi-dimensional phase space. In this paper, we discuss an innovative improve-

ment of the PDE method that uses a self-adapting binning method to divide the multi-dimensional

phase space in a finite number of hyper-rectangles (cells). The binned density information is

stored in binary trees, allowing for a very fast and memory-efficient classification of events. The

implementation of the binning algorithm (PDE-Foam) is based on the MC event-generation pack-

age Foam. We present performance results for representative examples (toy models). The new

PDE-Foam shows improved classification capability for small training samples and reduced clas-

sification time compared to a previous PDE implementation based on range searching (PDE-RS).
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1. Probability-Density Estimation

Multivariate discrimination techniques are used in High Energy Physics to distinguish signal
from background events based on a set of measured characteristic observables. Besides other so-
phisticated approaches, methods based on probability density estimation (PDE) are widely used.
The information contained in the individual observables iscombined into a single “discriminant”
variableD. The value ofD for a given event is based on the density of signal and background
training events in the vicinity of its coordinate in the multi-dimensional phase space. Applying
a cut onD allows to separate signal from background. A PDE method based on range-searching
(PDE-RS) [1] has been used successfully for classification problems in higher-dimensional ob-
servable spaces and with arbitrary correlations between the observables. Large samples of MC
simulated signal and background training events are storedin binary-search trees. An efficient
range-searching algorithm is used to sample the signal and background densities in small multi-
dimensional boxes around the phase-space points to be classified. PDE-RS shows a discrimination
power similar to artifical neural networks (NNs) at largely reduced training time. It has the further
advantage of transparently handling the involved statistical uncertainties and has the size of the
sampling box as the only free parameter. An apparent limitation of PDE-RS, on the other hand,
is the fact that large signal- and background training samples are required to densely populate the
multi-dimensional phase space. Furthermore, these samples have to be accessible in the main mem-
ory of the computer used for the classification and the classification time scales with the number of
training events likeTclass ∝ Ntrain · logNtrain.

2. Adaptive phase-space binning with Foam

In the following we discuss an alternative method to calculate the discriminantD(x) based on
histogrammed sampling of the phase space. Only the binned density information is preserved in
binary trees after the training phase, allowing for a very fast and memory-efficient classification of
events.

A self-adaptive binning method, called “PDE-Foam” [2], is used to project the information
contained in the signal and background samples into a grid ofd-dimensional cells with non-
equidistant cell boundaries, called the “foam of cells”. The implementation of PDE-Foam is based
on the MC event-generation package Foam [3] included in the analysis package ROOT [4] and has
been developed within the framework of the Toolkit for Multivariate Data Analysis with ROOT
(TMVA) [5]. The foam is iteratively produced using a binary-split algorithm for the cells acting
on samplings of the input distribution within the cell boundaries. For each cell, random samplings
of the input distribution are projected onto thed axes and the relative variance of the projected
distributions is evaluated along the axes. The cell to be split next and the corresponding division
axis and point for the split are selected as the ones for whichthe splitting leads to largest reduc-
tion in relative variance. After the split, the two new daughter cells become ’active’ cells and
the old mother cell remains in the binary tree, marked as being ’inactive’. The final number of
active cells is a predefined free parameter and only limited by the amount of available computer
memory. In the context of PDE, Foam has been adapted such thatthe splitting of cells is based
on an input distribution that is sampled from MC training events using the PDE-RS method. A
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detailed description of the splitting algorithm can be found elsewhere [2, 3]. The geometry of the
final foam reflects the distribution of the training sample: Phase-space regions where the density is
approximately constant are combined in large cells, while in regions with large gradients in density
many small cells are created. Figure 1(a) shows a 2-dimensional Gaussian-ring distribution1 and
Fig. 1(b) shows a graphical representation of the resultingfoam with 2000 active cells. Each cell
contains the number of events from the input distribution belonging to the volume of the cell. The
foam consists of only a few large and sparsely populated cells in the center and corner regions of
the 2-dimensional plane, where the gradient of the Gaussianradial component of the distribution is
small. Close to the center of the ring, however, where the radial component of the distribution has
a steep gradient, the foam consists of many small and denselypopulated cells.

(a) Input density (b) Foam representation

Figure 1: (a) 2-dimensional Gaussian-ring distribution sampled from 500000 events. (b) Foam representa-
tion with 2000 active cells. The level of grey indicates the event density inside the corresponding cell.

3. PDE-Foam parameters

A detailed description of the parameters steering the foam buildup is given elsewhere [2]. In
the following, we give a brief overview of the main parameteres and their optimisation for reaching
optimal classification performance.

3.1 Size of sampling box

The size of the box used for the phase-space sampling is a common parameter of both the
PDE-Foam method and the standard PDE-RS method. In case of PDE-Foam, the box size is only
relevant for the density sampling during the training phase, while for PDE-RS the box size is only
used for the calculation of the discriminant during the classification phase. A larger box leads to
a reduced statistical uncertainty for small training samples and to smoother sampling. A smaller

1The definition of this Gaussian-ring distribution corresponds to the signal distribution of the example “Highly
Correlated Observables” defined and discussed in [1]. The events are distributed uniformly in the azimuth angle and
according to a Gauss distribution in the radial coordinate,with mean radius of 3 and width of 0.5.
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box on the other hand increases the sensitivity to statistical fluctuations in the training samples, but
for sufficiently large training samples it will result in a more precise local estimate of the sampled
density.

Besides affecting the estimator performance, the box size influences the training time in case
of PDE-Foam and the classification time in case of PDE-RS. A larger box increases the CPU time
during sampling, due to the larger number of nodes to be considered in the binary search [1].

In general, higher dimensional problems require larger boxsizes, due to the reduced average
number of events per box volume.

3.2 Number of cells

The target number of cells for the final foam is the main parameter impacting the accuracy of
the phase-space binning. An increased number of cells leadsin general to improved performance
provided that sufficiently large training samples are available. However, for an increasing number
of cells with small training samples, the foam becomes more vulnerable to statistical fluctuations in
the training samples in particular in less populated regions of the phase space and the performance
might drop when further increasing the target number of cells (overtraining). An increased number
of cells also leads to increased training time and higher memory consumption to store the foam
object.
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Figure 2: Dependence of the estimator perfor-
mance on the number of active foam cells.

Figure 2 shows the dependence of the esti-
mator performance as function of the number of
active cells for an example with five moderately
correlated observables constructed from Gaus-
sian distributions for signal and background2.
The two curves correspond to foams build-up
from small and large training samples, respec-
tively. The small training sample consists of
5× 104 signal and 5× 104 background events,
whereas the large training sample contains 5×

105 signal and 5× 105 background events. As
expected, the performance of the foams built
from the large training sample exceeds the one
of the foams based on the small training sample.
In case of the large training sample, the perfor-
mance increases over a wide range of number of cells and reaches its maximum for about 20000
cells, after which it drops due to the decrease in statistical precision resulting in overtraining. For
the small training sample, the maximum is already reached for foams with approximately 5000
cells and the drop in performance afterwards is steeper.

3.3 Minimum number of events Nmin

The cell splitting algorithm assumes sufficient statistical accuracy of the sampled density dis-
tributions in all cells. This might not be guaranteed in caseof small training samples, where cell

2The definition of the distributions corresponds to the example “High Dimensional Example” defined and discussed
in [1].
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splitting in scarcely populated phase-space regions can lead to overtraining effects. Therefore cells
should not be taken into account for further splitting, if the number of training events contained
inside a cell is too small. An adjustable parameterNmin has been implemented, which sets the
minimum number of events contained in any cell which is considered for further splitting. If the
number of events is belowNmin, the cell is not considered for further splitting. If no morecells are
available with sufficient number of events, the cell splitting stops, even if the target number of cells
is not yet reached. The cut onNmin reduces the sensitivity to statistical fluctuations in the training
samples and improves drastically the performance for smallnumber of training events. The default
value ofNmin = 100 leads to a good performance for most cases studied. It canbe combined with
a large target number of cells, as it limits the effective number of cells sufficiently and thus avoids
overtraining even for small training-sample sizes.

4. Results

In the following we present a comparison of the performance and CPU-time consumption
between PDE-Foam and the standard PDE-RS method. The results are shown for the example with
five moderately correlated observables. Other examples have been studied and similar results were
obtained.

4.1 Performance
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Figure 3: Estimator performance as function of
the number of training events for foams with 1000
and 20000 active cells and for the standard PDE-
RS method.

Figure 3 shows the estimator performance,
measured by the area under the ROC curve, as
function of the number of signal and background
training events for foams of 1000 and 20000 ac-
tive cells, respectively. Note that the number of
training events corresponds to the indiviual sizes
of both the signal and background samples. The
actual total sample size is therefore twice the
number of events shown on the x-axis. The per-
formance of the standard PDE-RS method is also
shown. Single foams were built for these exam-
ples with 2000 samplings, a sampling-box size
of 0.033 and a cut on the minimum number of
events per cell ofNmin = 100. In case of PDE-
RS, the sampling-box size was 1.2 in units of the
original observables, corresponding to approxi-
mately 0.12 in normalised coordinates. For small training samples up to approximately 105 events,
the foams perform better than the standard PDE-RS method. Apparently the geometry of the foams
is well adapted to the event distributions and the implicit averaging of the event densities over the
cell volumes leads to better performance than the sampling with fixed box size performed by the
original PDE-RS method. For very small training samples of 30000 events and less, the foams
with 1000 and 20000 cells behave identically, since the cut on the minimum number of events
per cell of 100 limits the effective number of final cells to a value below 1000. For large training
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samples above 40000 events, the foam with 20000 cells performs better than the one with 1000,
taking advantage of its finer granularity and the increased statistical precision of the larger training
samples. However, for training-sample sizes of more than 2×105 events, it does not quite reach
the performance of the standard PDE-RS method. For such large sample sizes, the local density
estimates obtained with the PDE-RS method by counting events in the vicinity of the events to be
classified are more precise than the density estimates from counting events in foam cells of finite
granularity.

4.2 CPU time

For PDE-RS, the training time consists only of the creation of the binary search trees used to
store the training samples. For PDE-Foam on the other hand, the training time is dominated by the
repeated density sampling during the iterative build-up ofthe foam structure. On a 2.33 GHz CPU,
the total training time for PDE-RS was found to be about 7 seconds for a model with 5 observables
and training samples of 106 signal and background events each. The corresponding training time
for PDE-Foam with 1000 (20000) active cells was about 4.5 (120) minutes.

For PDE-Foam, the classification time depends mostly on the number of cells in the final foam
and is almost independent of the number of training events. For the standard PDE-RS method, on
the other hand, the classificiation time rises with the number of training events, due to the larger
size of the binary trees. With the training parameters described above, the classification time for
PDE-RS, using signal and background testing samples of 5× 105 events each, was found to be
about 40 minutes. The corresponding testing time for PDE-Foam with 1000 (20000) active cells
was only about 1.7 (2.7) minutes.

5. Conclusions

A new method for multivariate analysis, PDE-Foam, has been developed. It combines the
adaptive binning algorithm of the Foam method so far only used for Monte-Carlo event genera-
tion with probability-density estimation based on range searching (PDE-RS). PDE-Foam has been
implemented within the TMVA package for multivariate analysis. The performance of PDE-Foam
exceeds the classification performance of PDE-RS for small training samples. Furthermore, it
leads to largely reduced classification time. The classification time is independent of the number
of training events. The main limitations of PDE-RS have therefore been overcome.
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