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1. Introduction

Gene Expression Programming (GEP) is a relatively new version of Evolutionary Algorithms
developed in 2001 [1]. It combines and extends some of the ideas implemented in the more estab-
lished versions, Genetic Algorithms [2] and Genetic Programming [3], resulting in a variant which
overcomes some of the individual limitations of these versions.

The common approach of all Evolutionary Algorithms is to find the solution to a problem
by iteratively improving the quality of a candidate solution through a process which simulates
the natural evolution. The candidate solution is encoded into a form understood by the computer
called a chromosome. The candidate solution is changed through a process called genetic variation
achieved by applying a set of operators, called genetic operators, on the chromosome. The quality
of the candidate solution is assessed with an objective function called fitness function.

The main difference among different Evolutionary Algorithms variants is the way the can-
didate solution is encoded (represented) and, consequently, the structure of the genetic operators
which need to take into account the specific representation method. GEP uses two entities to rep-
resent the candidate solution, a chromosome, which is the encoder of the candidate solution, and a
tree, called an expression tree, obtained through a translation process from the chromosome. The
expression tree corresponds to a mathematical expression which represents the actual candidate
solution to the problem.

The applicability of GEP to particle physics data analysis was investigated in our previous
work [4] [5] [6] for an event selection (signal-background discrimination) problem. This paper
presents a continuation of those studies by investigating a series of techniques to improve the
effectiveness of the algorithm.

2. Gene Expression Programming

The full description of GEP is presented in [7] and summarised in [4] and [5]. Only a brief
summary is presented here.

The candidate solution to the problem at hand is encoded into a chromosome which is a list
of functions and terminals (variables and constants) organised in segments of equal length called
genes. Each gene has a “head” made of functions and terminals, and a “tail” made only of terminals.
The length of the head (h) is an input parameter to the algorithm, while the length of the tail is given
byt =h(n— 1)+ I, where nis the largest arity of the functions used in the gene’s head.

Each gene of the chromosome is decoded into an expression tree (ET). An example of a chro-
mosome made of one gene, the decoded ET and its corresponding mathematical expression is
presented in Figure 1. The decoding process implies placing the first element of the gene on the
first line of ET and then, on each next line, placing as many elements as required by the functions
of the previous line. The process continues until all elements of the ET’s line are only terminals.
Depending of the actual composition of the chromosome, the decoding process can end before the
end of the gene (even before the end of the gene’s head). This means the chromosome can have
non-expressed regions (just like the biological genes) which contain additional information used
during genetic variation whenever needed in order to create syntactically correct structures (ET’s).
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Figurel1: Unigenic chromosome, the decoded ET and its corresponding mathematical expression (Q- square
root function; a,b - terminals)

In the case of multigenic chromosomes, the ET’s corresponding to each gene are connected
with a linking function defined by the user. The mathematical expression associated with these
combined ET’s is the candidate solution to the problem.

An initial population of chromosomes is created by randomly selecting functions and terminals
from the set chosen by the user. Then each chromosome is decoded into an ET which represents
the mathematical expression corresponding to a candidate solution. The quality of the candidate
solution (chromosome) is evaluated using a fitness function defined by the user and adapted to the
problem to be solved. The value evaluated for this function is called chromosome’s fitness.

After the fitness of all individuals in the population was calculated, a termination criterion is
evaluated. This criterion is, usually, a level of quality of the candidate solution or a maximum
number of generations created. If the termination criterion is not met, a set of chromosomes are
selected with a probability proportional to their fitness and transformed by applying genetic opera-
tors on them. This process is called reproduction. The new individuals constitute a new population
and the process is repeated until the termination criterion is met. The best chromosome in the
final population is selected and decoded, resulting in the solution to the problem as found by the
algorithm.

The genetic operators used in GEP are cross-over (recombination) which exchanges parts of a
pair of chromosomes, mutation which randomly changes an element of a chromosome into another
element, preserving the rule that the tail contains only terminals, and transposition which moves a
part of the chromosome to another location in the same chromosome. Each operator is applied with
a certain probability, called operator rate, which needs to be optimised for the problem studied.

3. Problem studied and datasets

Using a statistical learning approach, GEP was used to extract selection criteria for a signal-
background classification problem with the purpose of investigating the behaviour and performance
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of the algorithm, rather than to extract a physics result.

In order to be able to rely on the conclusions of the previous studies ([4] [5] [6]) and to perform
meaningful comparisons, the same datasets as in these previous studies were used. They are Monte
Carlo data corresponding to the decay process Ks — 1" 71~ with Kg produced in €€ interaction
at 10 GeV in the BaBar experiment [8]. The €"e™ interaction was simulated generating ete~ —
gq events (g being a quark and q an antiquark) with JETSET [9] (for q being the u,d,s and C
quarks) and EvtGen [10] (for q being the b quark) simulation packages. The generated events
were passed through the detector response simulation package [11] and reconstructed with the
BaBar offline analysis software. Signal events were defined as those containing a reconstructed Kg
particle associated with a generated Kg particle and for which the reconstructed 77 daughters were
associated with the 7T daughters of the generated Kg particles. All the other reconstructed events
were defined as background.

Training and test data samples of equal sizes (5,000 events) with a signal-to-background ratio
of 1:4 were used. Each dataset contained 8 event variables as input to the analysis. They were
variables usually used in a standard cut-based analysis for the Kg decay process. The full list and
explanations can be found in [5]. It was previously demonstrated [6] that, for this problem, the
increase of the number of events or of the number of event variables in the dataset do not improve
the quality of the solution. The algorithm has the capability to select automatically the relevant
event variables and no overtraining was observed with the increase of the number of events.

The constants used in building the solution were created by the algorithm itself in the range
(-10,+10). The boundaries of the range were given as input to the algorithm. Selection rules were
extracted from the training data samples and tested on the corresponding test data samples.

The set of input functions from which the algorithm builds the chromosomes contained 36
common mathematical functions [5]. In this study it was also shown that, by restricting the set
of input functions to common logical functions, the algorithm finds automatically selection rules
similar to the cut-based rules used in a standard cut-based data analysis for the physics process
studied (in which the selection cuts are chosen based on physics considerations and their values
optimised manually), proving the algorithm works correctly.

Other GEP input parameters, found optimal for this problem in the previous studies , were:
the length of the gene head equal to 10, the number of chromosomes per generation equal to 100,
and the maximum number of generations equal to 20,000. The genetic operator rates were kept as
recommended in [7]: 0.044 for mutation, 0.3 for transposition and 0.1 for recombination.

The fitness function was the number of hits (the number of events correctly classified as signal
or background).

The performance of the algorithm was analysed in terms of the classification accuracy defined
as the ratio of the total number of events correctly classified (signal and background) to the total
number of events of the sample.

In this study a private software implementation of the algorithm was used. As part of its val-
idation, extensive comparisons of its results with those obtained with GeneXproTools [12], the
software package created by the algorithm developer and used in our previous studies, were per-
formed. The relative difference of the classification accuracies obtained with the two software
implementations was less than 0.1% in all cases.
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4. Enhancements of the algorithm

A number of techniques to improve the quality of the solution and the efficiency of the al-
gorithm were investigated in this study. In order to average the statistical fluctuations due to the
stochastic character of the algorithm, each version of the algorithm was run ten times in identical
conditions (identical input information) and the average classification accuracy was calculated and
used in comparison studies.

The difference between the results obtained with different versions of the algorithm was sta-
tistically analysed with the Students’ t test method [13] and its significance level calculated and
reported.

4.1 Prefix decoding
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Figure2: Example of the GEP and pGEP decoding methods

The original GEP uses a width-first decoding method, described in section 2, for mapping the
chromosome into an expression tree. In [14] a different method based on a prefix order notation was
proposed. Figure 2 shows an example of decoding the same chromosome with the two methods.
The prefix decoding starts with placing the first element of the chromosome on the first line of ET
and, if it is a function, placing the second element on the next line, as its first argument. If the
second element is also a function then the next elements of the chromosome are placed on the next
line, as arguments of the function. The process continues, following this depth-first approach, until
the entire branch is completed by ending with terminals. Then the next element of the chromosome
is placed on the second line of ET, as the second element of the first function, and the process
continues until ET is completed by ending all its branches with terminals. The GEP version based
on the prefix decoding method is called pGEP in this study. It should not, however, be assimilated
with the pGEP algorithm proposed in [14] which contains additional modifications of the original
GEP algorithm not considered here. These additional modifications abandoned some of the novel
ideas implemented in GEP, such as the head-tail separation of the chromosome, making a step
backwards towards other previously proposed versions of evolutionary algorithms.
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pGEP maintains better the proximity of the genetic material (chromosome’s elements) during
the translation process into ETs and this is expected to help the evolution process by reducing the
destructive effect of the genetic operators. It is more likely that the related genetic material remain
together in pGEP than in GEP during the evolution process.
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Figure 3: Classification accuracy as a function of the number of generations for GEP (red) and pGEP (blue)

The results obtained with GEP and pGEP for the problem studied here are presented in Figure
3 which shows the dependence of the classification accuracy obtained with the two algorithms
(GEP in red and pGEP in blue) as a function of the number of generations. It can be seen that,
indeed, pGEP if faster than GEP as it reaches the convergence sooner (around 10,000 generations).
Also, the classification accuracy obtained with pGEP after 20,000 generations is slightly higher
than that obtained with GEP. The two values are different at 35% significance level.

This result indicates that maintaining the proximity of the related genetic material during the
evolution process has a positive effect on the efficiency of the algorithm. It also suggests as useful
to investigate mechanisms to control this proximity during the evolution. Further studies in this
direction will be performed.

4.2 Truncated evolution

Each generation, particularly in the early stage of the evolution process, is expected to have a
number of individuals of low quality. In a normal evolution these individuals are fully processed
(take part in the selection process) and have a certain probability to participate in the reproduction
process. Truncated evolution is the evolution in which these low quality individuals are totally
eliminated with the expectation that this will improve the efficiency of the search process.

In this study the truncated evolution was implemented by imposing a certain fitness threshold
(FT). Only individuals with the fitness value higher than FT were allowed to participate in the
reproduction process. Imposing such a threshold has two effects which need to be balanced. On
one hand, it will improve the convergence speed (number of generations in which the solution is
found). On the other hand, it facilitates the reduction of the population diversity which might favour
the trapping of the algorithm in a local optimum. The value of FT has to be carefully optimised in
order to balance the two effects.

The FT used was guided by the average fitness value per population and it was called an online
fitness threshold. It was calculated by multiplying the average fitness per population with a scaling
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Figure4: Classification accuracy as a function of the number of generations for GEP (left) and pGEP (right)
with normal evolution (red) and with truncated evolution (blue)

factor which needs to be optimised for each problem. Typical values of the scaling factor were
between 0.5 and 1.5.

This online FT was found to provide a better pressure on the evolution process, if it is properly
optimised. If the value of FT is too high then unstable results are obtained due to a high degree of
uniformity of the population resulting in trapping the algorithm in local optima.

The results obtained by imposing an online FT are presented in Figure 4 for GEP (left) and
pGEP (right). The optimal scaling factor was found equal to 1.25 in both cases. It can be seen that
this method produces an earlier convergence (under 5,000 generations), particularly for pGEP, as
well as an improvement of the classification accuracy at the end of the search process. The values
obtained with and without truncated evolution are different at less than 1% significance level for
both GEP and PGEP.

4.3 Dynamic classification threshold

Most methods for signal-background classification produce a continuous output (function) on
which a classification threshold is applied in order to define the signal and background events, as
separated by the algorithm. This threshold is chosen at the end of the search process and adapted
to the final output. This approach is not adequate for methods based on Evolutionary Algorithms
as each individual (candidate solution) provides its own output which has its own optimum classi-
fication threshold.

In order to address this problem the optimal classification threshold was searched for each
individual by scanning the full range of the output function. This classification threshold was
called a dynamic classification threshold as it changes its value during the evolution process.

The results obtained with this method are presented in Figure 5 for GEP (left) and pGEP
(right). It can be seen that this methods provides a faster convergence in terms of number of
generations, particularly for pGEP (not much for GEP), as well as slightly higher classification
accuracies at the end of the process. The final classification accuracies obtained with and without
dynamic classification thresholds are different at 20% and 12% significance levels for GEP and
PGEP, respectively.
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with constant (red) and dynamic (blue) classification threshold
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with constant (red) and dynamic (blue) classification threshold and with truncated evolution

The dynamic classification threshold was also implemented together with truncated evolution
and the results are presented in Figure 6 for GEP (left) and pGEP (right). The earlier convergence
(under 5,000 generations) of the new versions of the algorithms can be seen also in this case, as well
as improvements of the final classification accuracy. The classification accuracies with and without
dynamic classification threshold and truncated evolution are different at less than 1% significance
level for both GEP and pGEP.

4.4 Combined developments

Combining the developments described in the previous sections, the highest performance is
obtained with the version of the algorithm using a prefix decoding, with truncated evolution and
dynamic classification threshold. The comparison between this version and the original GEP is
presented in Figure 7. The most significant improvement is in terms of the convergence speed, the
number of generations needed to reach the optimal solution being under 5,000 generations. The
quality of the final solution is also improved, the classification accuracy being with approximately
0.8% higher. The significance level of this difference is under 1%.

The improvement in the classification accuracy is not expected to be high for this problem as
it is a relatively simple problem and the original GEP is expected to perform well from this point of
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Figure7: Classification accuracy as a function of number of generations for pGEP with dynamic classifica-
tion thresholds and truncated evolution (blue) and the original GEP (red).

view. This can be seen also from the fact that the starting point of the search correspond to a high
classification accuracy, around 93% (the value at the first generation ). The trend, however, might
be important for more complex problems and this aspect will be investigated in further studies.

While the convergence speed in terms of the number of generations is faster for the new version
of the algorithm, the total running time is approximately the same for both versions as considerable
more running time is needed per generation in order to create individuals over the fitness threshold
and to optimise the classification threshold for each individual. Further studies to reduce this
running time will be performed.

4.5 Generalisation power
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Figure8: Classification accuracy on training (blue) and test (red) datasets for all versions of the algorithm.

The quality of the solutions developed by all versions of the algorithm was evaluated also in
terms of their generalisation power. These results are summarised in Figure 8 which shows the
classification accuracy on the training and test datasets for all versions of the algorithm, together
with the corresponding statistical uncertainty due to the limited number of events in the data sam-
ples. It can be seen that the test classification accuracy follows closely the training classification
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accuracy, with the difference between the central values less than 0.5%, and that they are equal in
the limit of the statistical uncertainty.

5. Conclusions

The original version of Gene Expression Programming was enhanced in this study with an al-
ternative mapping method between the chromosome and the expression tree, and with a truncated
evolution mechanism. Its application to a classification problem also implemented a dynamic clas-
sification threshold, meaning a mechanism for the optimisation of this threshold for each individual
used in the search process.

The alternative chromosome - expression tree mapping implemented was based on a prefix
notation approach which favours the maintenance of the proximity of the related genetic material
during the evolution process. The improvement observed in the convergence speed, measured in
terms on the number of generations, indicates the usefulness on keeping the related genetic material
together during the evolution. Further studies to exploit this behaviour will be performed.

The truncated evolution implemented allowed an earlier selection of the good candidate solu-
tions which resulted in an approximately 75% reduction of the number of generations needed to
reach the convergence of the search process. It also allowed a statistically significant increase of
the classification accuracy which defined the quality of the solution.

The dynamic classification threshold allowed a more accurate evaluation of the quality of
each individual, as its fitness was dependent on the value of the classification threshold. This also
contributed to the improvement of the performance of the algorithm in terms of both convergence
speed (measured as the number of generations in which the solution is found) and classification
accuracy.

The implementation of these mechanisms resulted in a version of the algorithm approximately
75% more efficient in terms of number of generations upto convergence and a slight improvement
of the final classification accuracy, approximately 0.8% for the relatively simple problem investi-
gated here, value which is statistically significant at a level lower than 1%.

These conclusions will be tested for more complex problems from particle physics in order to
fully evaluate their potential. Also, mechanisms to reduce the running time of the enhanced algo-
rithm will be investigated in order to allow a full exploitation of its beneficial behaviours observed
in this study.
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