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In high energy physics, variable selection and reductierkay to conducting robust multivariate
analyses. Initial variable selection often results inaklé sets with greater cardinality than the
number of degrees of freedom of the underlying model. Thisvaies the need for variable re-
duction, and more fundamentally, for a consistent decisiaking framework. Such a framework
calledPARADIGM, based on a global reduction measure called the global lwgtiébn and rele-
vant for searches for new phenomena in physics, is desadritaetail. We illustrate the common
pitfalls of variable selection and reduction, such as \@eignteractions and variable shadowing,
and show thaPARADIGM gives consistent results in their presence. In this paperdiacuss
the application oPARADIGM to several searches for new phenomena in high energy plarsics
compare the performance of different measures of rela@vible importance, in particular of
those based on binary regression. Finally, we describehmitpee called variable amplification
and show howpARADIGM can be used to improve classification performance.
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1. Introduction

Large variable sets are a common occurrence in modern scientific fie’se@egeral questions
are often encountered that require resolution. Are all the featuressany to achieve a particular
analysis performance goal? If a variable set were to be reducedisthatoptimal size of the final
feature set? Is there any tolerance to noise? What is the optimal analytsgysr&ome questions
are easier to address than others but, fundamentally, a consistent miec#diong framework is
highly beneficial for such circumstances.

In this paper, we propose a decision making framework calkriaDIGM, aimed at feature
selection, reduction and the improvement of the classification proca@ssaDIGM provides the
researcher with easy to interpret criteria for making decisions relevatiffénent analysis tasks
and features selected for the tasks. The decision making framework ignitetd to problems
encountered in high energy physics (HEP) but has been developttk drasis of several HEP
analyses of varying complexity.

PARADIGM relies on several concepts that have their roots in information and dettisiories.
First is calledrelative variable importanceuseful for tasks not associated with parameter space
reduction and also used PMRADIGM in the variable amplification algorithm. The other is the
global loss functionrelevant for parameter space reduction and classifier selection.

In Section 2 we describe the initial classifier selection. Relative variable tarpag is de-
scribed in detail in Section 3.1. Sections 3.2 and 3.3 are devoted to the cégsifiorocess using
variable amplification, a novel way of boosting. In Section 3.4 we discusshiiéenges frequently
encountered in multivariate analysis, such as variable interactions aallleashadowing, together
with how PARADIGM helps address them with relative ease. The global loss function is debcrib
in detail in Section 3.5, while Section 3.6 discusses optimal classifier selectiotheitfiobal loss
function. Finally, the full decision making framework is summarized in Section 4.

2. Initial Classifier Selection

Classification-based criteria are widely used for variable selection #atddelecision making
[1, 2, 3]. Other measures can be derived directly from data withoutdbeficlassification, as in
[4]. The classification-independent approach is well known to bestdtut less accurate than its
classification-based counterpart [1].

PARADIGM is by design classifier-choice independent. A researcher can aattishivially
choose any or all of the classifiers available to her, such as neurabnkstvdecision trees or rule
ensembles, as long as a performance measure can be assigned to alearfdbe classifiers.
A common choice for this performance measure is the area under theareop@rating charac-
teristic (ROC) curve [5], but other measures may be better [6]. As willdseiibed in Section
3.6,PARADIGM allows the researcher to unambiguously choose the optimal classifierdratieel
global loss functiomesults.

1An interesting subject in itself, not discussed in this paper
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3. Formulation

3.1 Relative Variable Importance

Relative variable importanceeflects the relevance of a particular variable to a given task
relative to all other variableseARADIGM'’s relative variable importance exhibits the main virtues
of other relative importance algorithms [3, 4, 7] such as linear separabititpader-independence,
and provides additional sensitivity from the inclusion of individual vagadffects in classification
and the capability to identify noisy and adverse features.

For the initially chosen variable se¥} = { X1, ..., Xn}, relative variable importancéRVI) is
defined to be:

RVI(X) = SCV; SF(S)*M(S) : (3.1)

whereF (X;, ...X;) is a general classifier performance mea&ullee sum encompasses subs&s {
of {V} that contain the variabl&;, and

\/V;Q(S)El—F(SF_(é;('}) , (3.2)

is a weight that accounts for individual variable’s share of the claspiéidormance measufg(S).
This weight is defined as a fractional performance loss (or gal}8) if the variableX; is removed
from a classifier. The final RVI values are additionally normalized:

N= ;F(S) W (S) . (3.3)

so that all the RVI sum to 1.

A technique with a similar goal in mind is found in the context of rule-basecessijon, a
framework that condenses classifiers (usually decision trees) intofdgfistben, elsg rules that
can be used as ensemble predictors [3]. Notably, even if all the rulgeardut marginally better
than random guessing, in a large ensemble they become a very good@rf]i@, 8]. A binary
rule-based regression tool calledLEFIT [3] is selected for a comparative study.

3.2 Comparison between RVI andRULEFIT

Analogous to how relative variable importance is defineguneriT [3], the RVI is directly
tied to the performance of classifiers containing the variable in question.e¥wwin contrast
to RULEFIT, the weightW, allows the RVI to be more sensitive to the effects of individual vari-
ables during classification and permits the identification of features thatehaggative effect on
classification.

A typical plot of the RVI for the 27 variables of a representative highrgynehysics analysis
[9] is shown in Fig. 1. On an absolute scaRADIGM's RVI exhibits both similarities and
differences toRULEFIT's variable importance measure (Fig. 2). Overall, the two criteria appear
consistent with one another. The notable exception is a variable on thenextight of Fig. 2,

2The range of the performance measure may vary. For the area inedROC curve the range 61(X,...X)) is
from0.5t0 1
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Figure 1: A typical plot of relative variable importance. Variable iDassigned in the decreasing order of
RVI
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Figure 2: Comparison between variable importance measures probiyledRADIGM andRULEFIT on an
absolute scale

unambiguously identified byARADIGM to be adverse to classification. As is true for all absolute
value criteria, the sign of variable importance is unattainable RUtbeFIT.

In order to gain insight into relative variable importance, it is worthwhile tosader what
makes one relative variable importance measure preferable to anothgra@sons, such as that in
Figure 2, can be used to infer the differences and similarities between tlmatwliidate measures,
but nothing more.

3.3 Relative Variable Boosting

The optimal way to address this quantitatively rather than qualitatively is toidemthe
amount of useful information provided by the two criteria and show how itifatmation can
be used to achieve analysis goals, for instance, to maximize the classificatien @f a given set
of variables.

We proceed to feed back the relative variable importance information intdaksifeccation
process, a procedure called RVBoost, that stands for relative i&rmaportance boost or ampli-
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Figure 3: Comparison of classifier performance using RVBoost VANRADIGM and RULEFIT to that
without RVBoost, for a fixed number of classifiers

fication. This approach requires creation of new classifiers that les@/eevariable importance
in direct decision making during the classification process. For exampleisiale trees relative
variable importance information is introduced at each decision-making jun¢tionfluence the
votes used to split the branches. The same boosting procedure casilheeplied to all known
classifiers.

If the relative variable importance measure in question contains informatibomthabe used
to further the classification goals of the analysis, it is clearly beneficialt ihithe case for both
relative variable importance amiLEFIT but in differing amounts (Fig. 3). A fixed number of clas-
sifiers in this example is RVBoosted with the RVI and tha EFIT measures. The performance of
the new classifiers is compared to that of the original classifiers. As F&jsinewsPARADIGM’S
RVI criteria outperforms®RULEFIT's variable importance and both outperform the original classi-
fiers when relative variable importance boosting is considered.

3.4 Subtlety in Variable Reduction

To illustrate a common caveat in multivariate analysis involving classification, Hhevdai-
able in Figure 4a is removed and the figure itself redrawn in 4b. A variabtesmas previously
marginally useful became adverse to classification and the order and nugritirelative variable
importance have changed. This behavior can be explained by the peasfemnultiple interactions
among variables, a common behavior during classification. For instancegigiah trees this can
lead to a phenomenon known as variable shadowing, when a presemce stirongly interacting
variable partially or entirely shadows its interacting partner, making it appesevant.

The fact that interacting variables influence the performance of thetingrarin both direc-
tions, can be used explain the common occurrence illustrated in Fig. 4. Acelassmulation of
variable interactions on the basis of risk analysis is found in Ref. [10&r&hre several methods
to quantify the strength of variable interactions. For exampla,EFIT uses the concept of partial
dependencies [3].

As Figure 4 shows, the variable importance landscape becomes distortee tentbval of
interacting variables. Presence of variable interactions significanthcesdine effectiveness of
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Figure 4. The RVI landscape a) prior to removal of the final variabletmaright b) after its removal

criteria that do not directly take them into account, sucR@seFIT’s variable importance or the
RVI, when it comes to parameter space reduction. Ignoring this subtletyosimon mistake re-
searchers make. One instead should choose measures for parametaesipiction that implicitly
incorporate variable interactions, such asdhabal loss functiondescribed in the next section.

3.5 Global Loss Function

Theglobal lossor gloss functio(GF) is an information measure specific to variable reduction
that allows a researcher to make sound decisions by incorporating leangractions. Given a
subset to be reduced, tigdobal loss functiormeasures the predictive power loss relative to an
upper bound of achievable performance of classifiers that remain:

_ 2sc(v-9) F(S)

GF(S)=1 V-S| ,

(3.4)

whereS C V is the subset considered for reduction and the absolute scale limit in thenohertor
is given by:

F(S),.,=2V"S. (3.5)

max
scV-s

In other words, given the initial variable set {V} from which a variety déssifiers can be
built, how much classification performance would be lost if one removessifS} of {V} of
various sizes? The answer is preciselydlmss function The lower its value, the lower the loss of
classification power resulting from the removal of the subSgt {

A characteristic plot of the global loss function is shown in Fig. 5. Note,ithtitis figure the
{S} subsets are ordered by increasing cardinality, and within the regioagu€ardinality, they
are arranged by a binary indexTherefore, the subse8} on the extreme left of Fig. 5a is the
null set {0}, for which the GF is approaching 0 but is still finite. On the opipe extreme is the
set {V} with the maximumgloss functiorvalue of 0.5, which reflects the fact that all the variables
have been removed.

3that follows from: 32_ () = 2" and F(S)max= 1. If F(Smax# 1, the right hand side of Eq. 3.5 and the
denominator in Eq. 3.4 instead becomé 2| x F (S)max
4index, where each digit signifies the presence or absence of amumiag variable in §}.
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Figure 5: Left: the gloss function for €|S|<27. Right: a snapshot within the equicardinality region
|S]=15

3.6 Optimal Classifier Selection

Theglobal loss functiompermits quantitative selection of optimal classifiers for given analysis
tasks, such as, for example, searches for previously unseenmpeeaoThe lower the area under
the gloss function curve (Fig. 5), the better the classifier choice this taff&rdht classifier choices
can be easily compared on this absolute scale leading to an optimal choioelfer fanalysis.

4. Decision Making Framework

By combining thegloss functiorandrelative variable importancea powerful decision making
framework can be made. The structure of the framework is as follows:

e As described in Section 2, suitable classifiers are selected
e An optimal classifier is chosen with tiggobal loss function

o If parameter reduction is desired, th8 subset with the minimum gloss function value is
chosen for reduction and its compliment is kept for further analysis

¢ Relative variable importance is used to cross-check that all adveligblesrare included in
the {S} subset to be reduced

e Once the final variable set is selected, tha800ST procedure described in Section 3.3 is
applied to maximize the performance of the classifiers built from this set

5. Discussion and Summary

It is worthwhile to note that minimization of thgdobal loss functions not equivalent to max-
imization of the classifier performance measure F(S), i.e. finding the highgstrming classifier
and its constituent variables (Fig. 6). Some researchers attempt a qalick & high performing
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Figure 6: The non-linear relationship between the global loss fmctind the classifier performance
measurd-(9)

classifiers, typically by adding or subtracting variables with forward seletackward elimina-
tion methods [11]. Once such a classifier is found its constituent paranpetee $s declared
optimal for further analysis. This approach, besides neglecting theblaiidgeractions, is inflexi-
ble.

In realistic searches for new phenomena that occur in nature clasaifeetgpically trained
on simulated (usually Monte-Carlo) data for at least one of the major clagseents, usually the
one related to the previously unseen object or model. If the researcherHhiengsIf to only one
classifier, or alternatively to only one of the many possible combinations sétheced parameter
space, without considering the associated loss of information, she bedonited in options if
the search does not yield the desired result. Remaining options are to set lichistaat over.
Making a choice of the parameter space based on the global loss funitigsion, that consistently
produces a strong family of classifiers out of its constituents, allows ontepdbaick and modify
the parameter space slightly and maintain a required high performance lévsuthaving to
repeat the classifier search. This becomes crucial when the modelsetietiag probed come in
significant variety and contain free parameters with unknown values.drcéise, flexibility, tied
with high performance, becomes a crucial aspect of a successfahsea

In summary,PARADIGM is a robust parallelized framework that provides decision-making
information to assist and improve modern day multivariate analysesapiGM 2.0 is the software
version used for this study. Its areas of application are classifier selecltissifier improvement,
variable selection and variable reduction. As the next step, the authgrartioular S.G.) would
like to implement or help implement the algorithm in a multivariate analysis framework.
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