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Tau leptons will play an important role in the physics program at the LHC. They will not only

be used in electroweak measurements and in detector relatedstudies like the determination of the

Emiss
T scale, but also in searches for new phenomena like the Higgs boson or Supersymmetry. Due

to the overwhelming background from QCD processes, highly efficient algorithms are essential

to identify hadronically decaying tau leptons. This can be achieved using modern multivariate

techniques which make optimal use of all the information available. They are particularly useful

in case the discriminating variables are not independent and no single variable provides good

signal and background separation. In ATLAS four algorithmsbased on multivariate techniques

have been applied to identify hadronically decaying tau leptons: Projective Likelihood Estimator

(LL), Probability Density Estimator with Range Searches (PDE-RS), Neural Network (NN) and

Boosted Decision Trees (BDT). All four multivariate methods applied to the ATLAS simulated

data have similar performance, which is significantly better than the baseline cut analysis.
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1. Introduction

Tau leptons play an important role in the physics to be observed at the ATLAS experiment [1].
They enter in electroweak measurements, studies of the top quark, and as a signature in searches
for new phenomena such as Higgs bosons, Supersymmetry and Extra Dimensions. However, tau
reconstruction and identification is not an easy task. The QCD multi jet events dominating the
backgrounds have a much larger cross-section [2]. Therefore, efficient selection using multivariate
analysis techniques is needed.

Tau leptons decay to hadrons in 64.8% of the cases and to electron or muon the rest of the
time. In about 77% of hadronic tau decays only one charged track is produced:τ → ντ +π±+nπ0

and in about 23% there are 3 charged tracks:τ → ντ + 3π± + nπ0 [3]. The tau candidates with a
single charged track are called 1-prong, with three tracks 3-prong.

Reconstruction of tau candidates

Hadronically decaying tau candidates are reconstructed using at least one of two possible seed
types. The first seed type (“track-seeded" tau candidate) isa track withpT > 6 GeV, which satisfies
further quality criteria. The second type of seed (“calo-seeded" tau candidate) consists of jets
reconstructed using calorimeter clusters withET > 10 GeV. These clusters are then grouped into
a jet using a seeded cone algorithm [4]. If a match between such a jet and tracks is found, the
tau candidate is considered as having two valid seeds. For reconstructed tau leptons inZ → ττ
events, 70% of all tau candidates have two valid seeds, 25% are only “calo-seeded", and 5% only
“track-seeded".

Discriminating variables

Discriminating variables used to distinguish tau leptons from QCD jets include: radius and
profile of EM calorimeter energy deposits, spread of the associated tracks, isolation variables cal-
culated from calorimetric energy deposits and tracks, impact parameter significance of the leading
track, invariant mass of the associated tracks, ratios of energy deposits to the sum of track transverse
momenta, and the transverse flight path significance of the candidate vertex.

Eight such discriminating variables are used for tau identification in the case of the “calo-
seeded" candidates. For “track-seeded" candidates nine discriminating variables for 1-prong and
eleven variables for 3-prong candidates are used. Distributions of four selected variables are shown
in Fig. 1.

These variables are not independent and no single variable provides a sufficient signal and
background separation.

2. Identification algorithms

Various tau identification algorithms are implemented in the TauDiscriminant package, which
is a part of the Atlas reconstruction software. The methods used are: cut analysis, Projective
Likelihood Estimator (LL), Probability Density Estimatorwith Range Searches (PDE-RS), Neural
Network (NN) and Boosted Decision Trees (BDT). All algorithms are implemented in the TauDis-
criminant package, which is a part of the ATLAS reconstruction software.
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ATLAS preliminary

Figure 1: Selected discriminating variables for tau candidates (dark-shaded - signal, hatched - background).
From left to right: emRadius- radius of the cluster in the EM calorimeter,isolationFraction- isolation
fraction of transverse energy between 0.1 < ∆R< 0.2 around the cluster barycenter (both for “calo-seeded"
candidates),m - invariant mass,etisolFrac- ratio of transverse energy in 0.2 < ∆R< 0.4 to total transverse
energy (both for “track-seeded" 1-prong candidates).

2.1 Cut analysis

Human optimized cuts are the baseline identification algorithm for “track-seed" candidates.
The cuts are optimized separately for 1-prong and 3-prong candidates. Figure 2 shows the recon-
struction and identification efficiencies for true and fake candidates as a function of their transverse
energy using the base-line cut selection.
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Figure 2: Reconstruction and identification efficiencies with respect to true candidates from signal (left) and
rejection for background candidates (right) with human optimized cut selection.

2.2 Projected Likelihood

The likelihood discriminant is constructed asd = LS/(LB + LS), whereLS and LB are
the likelihoods that a tau candidate is a real or a fake tau. Inthis approach correlations between
variables are ignored.

The likelihood function uses information from both the calorimeter and the tracker. Different
input variables are used for single and multi prong events. The variables from both “track-seeded”
and “calo-seeded” candidates are used in the likelihood calculation. This is the base-line method
for “calo-seeded" tau candidates.

The projected likelihood method has low memory and CPU consumption together with good
performance. It is transparent and insensitive to small changes in the training sample.

3



P
o
S
(
A
C
A
T
0
8
)
0
8
0

Tau identification using multivariate techniques in ATLAS Marcin Wolter

Figure 3 (left) shows the performance of the method for threeprong tau candidates recon-
structed from both the calorimeter and the track seeds.
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Figure 3: Rejection vs efficiency using projected likelihood (left plot) and using PDE-RS (right plot) for
three prong tau candidates. Tau candidates were reconstructed from both track and calorimeter seeds.

2.3 PDE-RS algorithm

Probability Density Estimator with Range Searches (PDE-RS) [5] is based on sampling the
signal and background densities in a multidimensional phase space built out of discriminating
variables. Taking the number of signal eventsnS and the number of background eventsnB in
a small volumeV(x) around pointx in the multidimensional space, a discriminant defined as
D(x) = nS/NS/(nS/NS+nB/NB) is a good approximation of the probability that a given candidate
is a signal.NS stands for the total number of signal events andNB for the number of background
events. The event counting is done using multidimensional binary trees, which increase the speed
of the algorithm. Hypercube dimensions are the only free parameters to be tuned. In the adap-
tive PDE-RS mode, the volume size is adapted automatically such that the number of events from
the training sample enclosed in it is similar for all volumes. Use of adaptive PDE-RS increases
background rejection by about 5% compared to standard PDE-RS.

The PDE-RS method has good performance and it takes correlations between variables into
account. The disadvantage is the high memory and CPU consumption and relatively big training
samples needed for an optimized analysis. The results for the adaptive method are shown in Fig. 3
(right).

2.4 Neural Network

Neural network is a non-linear discriminating method [6]. For tau identification the Stuttgart
Neural Network Simulator [7] is used.

In the feedforward network, as used for the tau identification, the information propagates from
input to output without any loops. The architecture of the network is optimized to give the proper
classification of signal and background and to avoid over-training at the same time. The trained
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network is exported to C code which is then included in the ATLAS software. The resulting code
is fast and has low memory consumption.

The neural network identification is implemented for “track-seeded" tau candidates. Eight
separate networks are trained separately for 1,2,3-prong candidates with and without an additional
πo cluster. For 1-prong candidates separate networks are useddepending on the impact parameter
significance availability, since including it improves theselection. The rejection of the neural
network identification is shown in Fig. 4 (left) as a functionof the efficiency.
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Figure 4: Rejection as a function of the efficiency for neural network (left) and for BDT algorithm (right)
for 3-prong tau candidates reconstructed with both seeds.

2.5 Boosted Decision Tree

Well-optimized multivariate algorithms converge to similar signal/background separation, since
they all approximate the Bayes discriminant function. An important difference is how easy, fast
and robust the optimization is. BDTs have several attractive features in this regard: they are fast
to train, they take correlations between variables into account, they can use discrete variables di-
rectly, adding well-modelled variables will not degrade performance and the number of tunable
parameters is quite small.

A decision tree is a variation of a simple cut-based classifier in which objects failing cuts are
not discarded, but are instead subject to further analysis.In this way, a cut-based procedure can be
transformed into a multivariate technique with a quasi continuous discriminant output.

A tree is built by training on signal and background samples.To build a tree, the node must
be split into a pair of “child” nodes according to some criteria. The algorithm achieves this split by
scanning all input variables to find the cut-value which maximizes the decrease in node impurity.

Boosting is a general technique for improving the performance of any weak classifier. It
involves a weighted average over many decision trees, whichstabilizes the result and improves
performance. The boosting algorithm increases the weight of events misclassified by the first tree
and repeats training. In effect, this causes the second treeto change its optimization to better
classify such events for which the first tree was weak. This procedure continues through a user-
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chosen number of trees. In the end, the full set of trees is combined to obtain a final discriminant.
The implementation described employs the AdaBoost method [8].

Boosted Decision Tree has been found to perform well in separating taus from jets and elec-
trons. Fig. 4 (right) summarizes the performance of the BDT algorithm.

3. Summary and outlook

All the methods presented are performing well: while the cutanalysis is robust, transparent
for users and not CPU demanding the use of multivariate techniques leads to performance im-
provement. Projected Likelihood is a well performing, fasttool which is already popular in HEP.
PDE-RS is efficient, but CPU demanding and large samples of reference candidates are needed.
Neural Network provides fast classification while converted to the C function after training and
BDT besides good performance offers also simple training with not many parameters to be tuned.

Experience shows, that multivariate analysis is necessary, if it is important to extract as much
information from the data as possible. However, for classification problems no single “best" method
exists. What becomes important is also simplicity of training and fast, robust classification.

We have implemented multivariate algorithms optimized on Monte Carlo samples. Next task
is to prepare for real ATLAS data. This requires finding an optimal set of variables by variable
ranking and possible reduction. The optimization should befocused on robustness and flexibility.
While real data become available the important part is a comparison of Monte Carlo with them,
taking into account also correlations between variables. Other important issue is the estimation of
systematic uncertainties.
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