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Tau leptons will play an important role in the physics pragrat the LHC. They will not only
be used in electroweak measurements and in detector relaigids like the determination of the
E?“ssscale, but also in searches for new phenomena like the Higggsbor Supersymmetry. Due
to the overwhelming background from QCD processes, higffigient algorithms are essential
to identify hadronically decaying tau leptons. This can bei@ved using modern multivariate
techniques which make optimal use of all the informatiorilaisée. They are particularly useful
in case the discriminating variables are not independethitremsingle variable provides good
signal and background separation. In ATLAS four algoritimased on multivariate techniques
have been applied to identify hadronically decaying tatdeg: Projective Likelihood Estimator
(LL), Probability Density Estimator with Range SearcheBEPRS), Neural Network (NN) and
Boosted Decision Trees (BDT). All four multivariate metisaapplied to the ATLAS simulated
data have similar performance, which is significantly betian the baseline cut analysis.
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1. Introduction

Tau leptons play an important role in the physics to be oleskat the ATLAS experiment [1].
They enter in electroweak measurements, studies of theuagkgand as a signature in searches
for new phenomena such as Higgs bosons, Supersymmetry aradBmensions. However, tau
reconstruction and identification is not an easy task. Th& Q@dlilti jet events dominating the
backgrounds have a much larger cross-section [2]. Thexgeédficient selection using multivariate
analysis techniques is needed.

Tau leptons decay to hadrons in.8% of the cases and to electron or muon the rest of the
time. In about 77% of hadronic tau decays only one charget tsgproducedr — v; + i+ + nr®
and in about 23% there are 3 charged traaks> v; + 31" +nr° [3]. The tau candidates with a
single charged track are called 1-prong, with three traesoBg.

Reconstruction of tau candidates

Hadronically decaying tau candidates are reconstructied) as least one of two possible seed
types. The first seed type (“track-seeded" tau candidagerack withpr > 6 GeV, which satisfies
further quality criteria. The second type of seed (“calees®” tau candidate) consists of jets
reconstructed using calorimeter clusters vih> 10 GeV. These clusters are then grouped into
a jet using a seeded cone algorithm [4]. If a match betweeh ayet and tracks is found, the
tau candidate is considered as having two valid seeds. Eons&ucted tau leptons id — 1T
events, 70% of all tau candidates have two valid seeds, 2B8%rdy “calo-seeded”, and 5% only
“track-seeded".

Discriminating variables

Discriminating variables used to distinguish tau leptammsnf QCD jets include: radius and
profile of EM calorimeter energy deposits, spread of the@atex tracks, isolation variables cal-
culated from calorimetric energy deposits and tracks, chparameter significance of the leading
track, invariant mass of the associated tracks, ratiosefgrdeposits to the sum of track transverse
momenta, and the transverse flight path significance of thdidate vertex.

Eight such discriminating variables are used for tau idieation in the case of the “calo-
seeded" candidates. For “track-seeded" candidates régerdinating variables for 1-prong and
eleven variables for 3-prong candidates are used. Disimitmiof four selected variables are shown
in Fig. 1.

These variables are not independent and no single variabledps a sufficient signal and
background separation.

2. ldentification algorithms

Various tau identification algorithms are implemented m TauDiscriminant package, which
is a part of the Atlas reconstruction software. The methagduare: cut analysis, Projective
Likelihood Estimator (LL), Probability Density Estimataith Range Searches (PDE-RS), Neural
Network (NN) and Boosted Decision Trees (BDT). All algonith are implemented in the TauDis-
criminant package, which is a part of the ATLAS reconstrttsoftware.
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Figure 1: Selected discriminating variables for tau candidateskdaaded - signal, hatched - background).
From left to right: emRadius radius of the cluster in the EM calorimetésplationFraction- isolation
fraction of transverse energy betweefh & AR < 0.2 around the cluster barycenter (both for “calo-seeded
candidates)m - invariant massetisolFrac- ratio of transverse energy in®< AR < 0.4 to total transverse
energy (both for “track-seeded" 1-prong candidates).

2.1 Cut analysis

Human optimized cuts are the baseline identification algarifor “track-seed" candidates.
The cuts are optimized separately for 1-prong and 3-prondidates. Figure 2 shows the recon-
struction and identification efficiencies for true and fakadidates as a function of their transverse
energy using the base-line cut selection.
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Figure 2: Reconstruction and identification efficiencies with respetrue candidates from signal (left) and
rejection for background candidates (right) with humanrofzted cut selection.

2.2 Projected Likelihood

The likelihood discriminant is constructed ds= %s/(%s + %), where %s and % are
the likelihoods that a tau candidate is a real or a fake tauhithapproach correlations between
variables are ignored.

The likelihood function uses information from both the catteter and the tracker. Different
input variables are used for single and multi prong evente Variables from both “track-seeded”
and “calo-seeded” candidates are used in the likelihoocltzlon. This is the base-line method
for “calo-seeded" tau candidates.

The projected likelihood method has low memory and CPU coipgion together with good
performance. It is transparent and insensitive to smalhgésa in the training sample.
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Figure 3 (left) shows the performance of the method for thpeng tau candidates recon-
structed from both the calorimeter and the track seeds.
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Figure 3: Rejection vs efficiency using projected likelihood (lefopland using PDE-RS (right plot) for
three prong tau candidates. Tau candidates were recotestriuem both track and calorimeter seeds.

2.3 PDE-RS algorithm

Probability Density Estimator with Range Searches (PDE-{BEis based on sampling the
signal and background densities in a multidimensional @lsmce built out of discriminating
variables. Taking the number of signal evengsand the number of background evems in
a small volumeV (x) around pointx in the multidimensional space, a discriminant defined as
D(x) = ns/Ns/(ns/Ns-+ng/Ng) is a good approximation of the probability that a given cdat
is a signal.Ng stands for the total number of signal events &lgdor the number of background
events. The event counting is done using multidimensioimalri trees, which increase the speed
of the algorithm. Hypercube dimensions are the only freaupaters to be tuned. In the adap-
tive PDE-RS mode, the volume size is adapted automaticadlip that the number of events from
the training sample enclosed in it is similar for all volumédse of adaptive PDE-RS increases
background rejection by about 5% compared to standard PBE-R

The PDE-RS method has good performance and it takes caoreddietween variables into
account. The disadvantage is the high memory and CPU corigumgnd relatively big training
samples needed for an optimized analysis. The results éaaidhaptive method are shown in Fig. 3

(right).
2.4 Neural Network

Neural network is a non-linear discriminating method [6¢r Fau identification the Stuttgart
Neural Network Simulator [7] is used.

In the feedforward network, as used for the tau identificatibe information propagates from
input to output without any loops. The architecture of themeek is optimized to give the proper
classification of signal and background and to avoid owaning at the same time. The trained
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network is exported to C code which is then included in the ABLsoftware. The resulting code
is fast and has low memory consumption.

The neural network identification is implemented for “tregdeded” tau candidates. Eight
separate networks are trained separately for 1,2,3-prandidates with and without an additional
m° cluster. For 1-prong candidates separate networks aredegemhding on the impact parameter
significance availability, since including it improves tkelection. The rejection of the neural
network identification is shown in Fig. 4 (left) as a functiofthe efficiency.
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Figure 4: Rejection as a function of the efficiency for neural netwdet] and for BDT algorithm (right)
for 3-prong tau candidates reconstructed with both seeds.

2.5 Boosted Decision Tree

Well-optimized multivariate algorithms converge to sianisignal/background separation, since
they all approximate the Bayes discriminant function. Ampartant difference is how easy, fast
and robust the optimization is. BDTs have several attradiatures in this regard: they are fast
to train, they take correlations between variables intmant; they can use discrete variables di-
rectly, adding well-modelled variables will not degradafpemance and the number of tunable
parameters is quite small.

A decision tree is a variation of a simple cut-based classifigvhich objects failing cuts are
not discarded, but are instead subject to further analyrsithis way, a cut-based procedure can be
transformed into a multivariate technique with a quasi icus discriminant output.

A tree is built by training on signal and background sampiesbuild a tree, the node must
be split into a pair of “child” nodes according to some cideiThe algorithm achieves this split by
scanning all input variables to find the cut-value which maxes the decrease in node impurity.

Boosting is a general technique for improving the perforoeanf any weak classifier. It
involves a weighted average over many decision trees, wstalbilizes the result and improves
performance. The boosting algorithm increases the weigévents misclassified by the first tree
and repeats training. In effect, this causes the secondidrebange its optimization to better
classify such events for which the first tree was weak. Thieguure continues through a user-
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chosen number of trees. In the end, the full set of trees idowed to obtain a final discriminant.
The implementation described employs the AdaBoost met8pd [

Boosted Decision Tree has been found to perform well in sejpar taus from jets and elec-
trons. Fig. 4 (right) summarizes the performance of the BIjdrithm.

3. Summary and outlook

All the methods presented are performing well: while the analysis is robust, transparent
for users and not CPU demanding the use of multivariate tquba leads to performance im-
provement. Projected Likelihood is a well performing, femsil which is already popular in HEP.
PDE-RS is efficient, but CPU demanding and large samplesfeferce candidates are needed.
Neural Network provides fast classification while converte the C function after training and
BDT besides good performance offers also simple trainirth ndt many parameters to be tuned.

Experience shows, that multivariate analysis is neces#airys important to extract as much
information from the data as possible. However, for classiiibn problems no single “best” method
exists. What becomes important is also simplicity of tragnand fast, robust classification.

We have implemented multivariate algorithms optimized aoni¢ Carlo samples. Next task
is to prepare for real ATLAS data. This requires finding anropt set of variables by variable
ranking and possible reduction. The optimization shouldosesed on robustness and flexibility.
While real data become available the important part is a esisgn of Monte Carlo with them,
taking into account also correlations between variableheOmportant issue is the estimation of
systematic uncertainties.
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