
P
o
S
(
A
C
A
T
0
8
)
0
8
1

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Cooperation among ALICE Storage Elements:
current status and directions (The ALICE Global
Redirector: a step towards real storage robustness).

Fabrizio Furano1
CERN
Geneve 23, CH-1211, Switzerland
E-mail: fabrizio.furano@cern.ch

In this talk we address the way the ALICE Offline Computing is starting to exploit the
possibilities given by the Scalla/Xrootd repository globalization tools. These tools are quite
general and can be adapted to many situations, without disrupting existing designs, but adding a
level of coordination among xrootd-based storage clusters, and the ability to interact between
them.

XII Advanced Computing and Analysis Techniques in Physics Research
Erice, Italy
3-7 November, 20

1 Speaker

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 2

1.Introduction

In the ALICE computing model, the data access is performed through the so-called
“Xrootd protocol”, actually allowing sites to choose the preferred data access platform to deploy,
among the ones supporting this data access protocol. [1]

A matter of fact is that the Scalla/Xrootd framework is getting a large success in the
various deployments, thus making possible to think about how to make a coherent distributed
storage of very large size evolve form the technological point of view, in order to provide a
better service for the current and future times. Although the motivation for this kind of
evolution could be considered largely academic, unfortunately this is not true. The reason for
that is the obvious wait for the massive access to the ALICE data repository, but, on the other
hand, generally there is a diffused concern about the evolution of the computing farms in the
next years. This evolution might raise by a factor the data access rate for the whole repository,
potentially turning the data access part into a serious bottleneck. In this environment, we started
considering the fact that we believe that the typical Wide Area Network connections between
sites could be used more efficiently, both for data access (eventually partially, as we will
discuss) and for data movement across sites.

This major technological effort must be viewed as a serious attempt to prepare the data
access technology in use for the times to come, in order to reduce the risk associated to the
(largely expected) increase in the expectations dealing with quality, robustness and aggregate
data throughput for the whole repository.

2.The starting point

In order to better understand the work done and the chosen design directions, we believe
that it is useful to summarize the characteristics of the Scalla/Xrootd platform, some of which
were considered as a starting point to decide the direction to exploit.

One point of view that sometimes, in our experience, is not strongly enough considered, is

the overall complexity of most software tools and frameworks used in HEP computing, when it
comes to considering the parts constituting them. From this perspective, the commonly used
statement about the Scalla/Xrootd platform is “no weird configuration requirements”; the
explanation of this is that, by design, the whole platform considers concepts like simplicity and
self-contention as a major requirement, thus reducing drastically the number of dependencies
from external packages. For this reason, a better explanation for the said statement could be that
the complexity of a deployment typically “scales linearly” with the complexity of the
requirements for that deployment. Moreover, the common deployment choices have been fully
encapsulated in to the setup procedure [6], drastically reducing the need for subtle and complex
setup/maintenance tasks. To this aspects, we must add the fact that, starting from the default
configuration, the system is highly customizable, if needed, eventually exploiting the
possibilities given by its internal configuration files or its modular architecture, fully based on
software plugins.

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 3

One more very important feature, which we believe it’s fundamental for the kind of usage

that we are going to describe, especially when dealing with Wide Area Network connections is
the set of fault tolerance-related procedures described in the Xrootd protocol [1][5] and
implemented in its client side, namely XrdClient. [4]

Other interesting characteristics of the Scalla/Xrootd platform for data access are related to

performance and scalability. One of the first aims of the project was to make it possible to scale
the system theoretically in an indefinite way at the server side [2]. The basic and very simplified
idea behind the architectural details is that, doubling the hardware resources should be an
always-valid way to double the data throughput and/or the site of the repository. This is an
interesting feature especially when it comes to thinking about repositories that are distributed
among different sites, and its practicability is augmented by the very reduced (if not inexistent)
set of external software dependencies. The reason for that is that a system that is not very
scalable is not, in principle, a very good candidate for bigger and bigger deployments where the
overall quality of service is not an option.

The fact that the whole platform does not make use of databases (e.g. to translate file
names or to keep a catalogue of them), but instead exploits concepts which are closer to the
peer-to-peer agents world [2], constitutes also the technological basis to another set of
characteristics, all of them useful when it comes to distributing a large repository across
different sites. In this case we are referring to the fact that opening a file towards an xrootd
server has an additional latency which is very low with respect to the one given by the hardware
where the server and the client run, here comprehending also the network between them [3] [7].

Moreover, various multiplexing techniques on the TCP connections and the file
descriptors help in keeping low the resource usage at the server side, thus allowing more clients
to connect to the same server, since the only present hard limit is the number of sockets and file
descriptors in the machine.

The last topic about the characteristics of the Scalla/Xrootd system which can be useful to
build new efficient ways to handle very large data repositories distributed through multiple sites
is related to the fact that all the system can work with Wide Area Networks with a good level of
efficiency, [8] because:

• The client-server connections allow an efficient remote POSIX-like direct data access (in

read and write mode) through Wide Area Networks, by making use, when needed, of:
 TCP multistreaming techniques, in order to be able to maximize the data throughput

in high latency networks;
 Latency-hiding mechanisms [8], which can play a major role in highering the data

throughput through high latency networks, also for sparse data access patterns;
 The ROOT [9][10] data analysis framework, used extensively in the ALICE software,

is able to correctly trigger the latency-hiding mechanisms, because it is able to
produce, in most cases, a list of pairs (offset, length) describing the future data access
pattern, suitable for feeding the algorithms behind those latency-hiding mechanisms.

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 4

• The server clusters can be composed by servers located in different sites, or one can create a
meta-cluster by aggregating several clusters, thus giving a unique entry point for their
content.

3.The Virtual Mass Storage System

The set of Wide Area Network related features of the Scalla/Xrootd system, as described, plays
a major role in giving ways to make a storage system evolve in the direction of being able to
exploit Wide Area Networks in a productive way. The major design challenge is how to exploit
them in order to augment the overall robustness of a large distributed deployment.
Nevertheless, in this perspective we must consider the fact that the ALICE computing model
[11][12] refers to a production environment, which is used heavily and continuously. Any
radical change, hence, was not to be considered a good idea (given also the high complexity of
the whole ALICE software infrastructure).
Moreover, the idea of accessing remote data from data analysis jobs was not new in the ALICE
computing framework. For instance, this is the default way that the analysis jobs have to access
the so-called “conditions data”, which are stored in a storage element at CERN. Even if each
analysis job accesses 100-150 conditions data files (and 10,000 concurrent jobs are considered a
normal activity), historically that choice always proved itself a very good one, with a good
performance for that task, and a negligible failure rate.
On the other hand, the ALIEN software [11], together with its central services, already gives
some sort of unique view of the entire repository, by faking the namespace coherence across
different sites by mapping the file names using a central relational database. Its usage patterns
also confirms the fact that it would be desirable to move towards a model where the storage
coherence is given by the storage system itself and does not need computationally very heavy
namespace translations.
One more very important consideration comes also from the fact that in the ALICE computing
model any storage cluster can be populated only in two ways:
• Writing directly to it from an external machine, where a software takes responsibility of the

transfer;
• Writing to the backend store, if present (e.g. a tape system behind the disk pools, which then

act as a cache).

For instance, in the ALICE computing model these tasks are accomplished by a daemon called
FTD (File Transfer Daemon), which runs in every site. Although functional and relatively
performant, there are some issues which are inherent in this kind of design, and which we can
shortly summarize as follows:
• All the data transfer load hits the same machine where FTD runs for the site

 Several concurrent transfers can consume a high amount of system resources;
 All the external traffic of the site goes through one machine, which by construction is

in the site which is the destination of the data move;

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 5

• If a file is missing or lost for any reason (e.g. broken disks, errors in the central catalog,
etc…),
 All the processing jobs scheduled to run on that file instance will inevitably fail, and

the trouble can be solved only with a careful human intervention.
 With an order of 107 online files per site, finding the source of such a file miss can be

extremely problematic.

An additional consideration is that, from a functional point of view, we considered as a poor
solution the fact that, once a missing file is detected, nothing is done by the storage system to
fetch it. This is especially controversial when, for instance, the file that is missing in a site is
available in a well-connected one, and pulling it could be done without interrupting the
requesting job.
A careful consideration of all these aspects led to thinking that there was a way to redesign the
ALICE Scalla/Xrootd-based distributed storage in a way which automatically tries to fix this
kind of problems, and at the same time does not disrupt the existing design, allowing for an
incremental evolution of the storage, distributed across many almost independent sites
contributing to the project. One more requirement was to design it in the most generic way,
possibly agnostic with respect to the computing environment where it’s placed.

The solution to the problem has been to apply the following statements to the overall storage:
• All of the xrootd-based ALICE storage elements are aggregated into a unique meta-cluster,

which exposes a unique and namespace-coherent view of their content;
• Each site that does not have tapes or similar mass storage systems considers the meta-cluster

(except itself) as its mass storage system. If an authorised request for a missing file comes to
a storage cluster, then this tries to fetch it from one of the neighbours.

The host which manages the meta-cluster (which in the Scalla/Xrootd terminology is called a
meta-manager) has been called ALICE Global redirector, and the idea for which a site considers
the global namespace (to which it participates with its content) as its mass storage has been
called Virtual Mass Storage System (VMSS).

In this context, we consider as very positive statements the facts that:
• In the xrootd architecture, the process of location of a file is very fast (if the location is

unknown to a manager server, finding it takes approximately only a network round-trip time
plus one local file system lookup);

• No central repositories of data or metadata are needed for the mechanism to work,
everything is performed through real-time message exchanges;

• All of the features of the Scalla/Xrootd suite are preserved (e.g. scalability, performance,
etc…);

• The design is completely backward compatible, e.g. in the ALICE case no changes were
required to the complex softwares which constitute the computing infrastructure;

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 6

• The system, as designed, represents a way to deploy and exercise a global real-time view of
a unique multi-petabyte distributed repository in an incremental way. This means that the
system is able to give a better service as more and more sites upgrade their storage clusters
and join in.

Figure 1: An exemplification of the Virtual Mass Storage System

Figure 1 shows a generic small schema of the discussed architecture. In the lower part of
the figure we can see three cubes, representing sites with a Scalla/Xrootd storage cluster. If a
client instantiated by an analysis job (on the leftmost site) does not find the file it needs to open,
then the GSI cluster asks the global redirector to get the file, just requesting to copy from it.
This copy request (which is just another normal Xrootd client) is then redirected to the site that
has the needed file, which is copied immediately to the leftmost site. The previously paused job
can then continue its processing like if nothing particular had happened.

4.Conclusion

As very often happens, the described effort is an ongoing task on a system in production,
composed by more than 60 sites all over the world. Hence, the overall activity was aimed at
giving to the whole storage system a way to evolve technologically, without disrupting a design
that is known to work reasonably well from the functional point of view.
 One of the most interesting features of the new design is that the new storage clusters are more
autonomous, and are able to initiate a “file pull” in a few milliseconds, which is a couple of
orders of magnitude faster than the current system, based on a centralised scheduling of the data
transfers to perform, and on database lookups to check for new transfers to initiate.

!"#!

$%&'()!

*#+,-!

"./,012+!

34&564789)%!21:*!

,;#214'<7=&<4%)>?%)@87%!

;7@&<4@<?)58A4B7%C!

57%D&<<6!

-?AA?5'4&4E?<)F!

,AC487489)4'<7=&<4%)>?%)@87%!

!)84%)>?%)@8)>487489)4%?'98!

@7<<&=7%&8?5'4@<(A8)%!

,4AD&%84@<?)584@7(<>4G7?5849)%)!

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 7

Even if this new mechanism is proving itself very good in fetching automatically the missing
files in a repository, there are some aspects that are even more interesting from the
technological and functional points of view.

One is that in the near future, this highly robust and performant way to move files could be used
as a transport mechanism, always coordinated by FTD in the ALICE computing (or any other
system with similar functionalities), but demanding the transfers to the storage cluster, in order
to get better performance and stability.
Another aspect is that, even if right now it is treated as a secondary feature, the ALICE global
redirector is just a plain xrootd server able to give robust, real-time access to a fully distributed
repository through Wide Area Network. Hence, if an application is able to correctly trigger the
latency-hiding mechanisms of the Scalla/Xrootd client, by pointing it to the global redirector it
can run with a good performance even through WAN, since each file open it performs will be
redirected to the proper site, and the latencies of the WAN will be almost completely cancelled,
provided that the network can give a sufficient throughput.
At this time we are not proposing or foreseeing to leave the well-tested design for which an
analysis job preferably accesses data locally to the site where it runs; instead, we believe that
this kind of feature could be one more step in the direction of allowing a physicist willing to
analyse some data interactively to perform quickly and efficiently his task without having to
schedule an analysis job.

References

[1] The Scalla/xrootd Software Suite, http://savannah.cern.ch/projects/xrootd and

http://xrootd.slac.stanford.edu/

[2] Fabrizio Furano, Andrew Hanushevsky, "Managing commitments in a Multi Agent System using
Passive Bids," iat,pp.698-701, 2005 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT'05), 2005

[3] Hanushevsky, A. and Weeks, B. 2005. Designing high performance data access systems: invited
talk abstract. In Proceedings of the 5th international Workshop on Software and Performance
(Palma, Illes Balears, Spain, July 12 - 14, 2005). WOSP '05. ACM, New York, NY, 267-267. DOI=
http://doi.acm.org/10.1145/1071021.1071053

[4] Dorigo, A., Elmer, P., Furano, F., and Hanushevsky, A. 2005. XROOTD/TXNetFile: a highly
scalable architecture for data access in the ROOT environment. In Proceedings of the 4th WSEAS
international Conference on Telecommunications and informatics (Prague, Czech Republic, March
13 - 15, 2005). M. Husak and N. Mastorakis, Eds. World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, 1-6.

[5] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, Xrootd - A highly scalable architecture for
data access, WSEAS Transactions on Computers, Apr. 2005.

[6] XRootd explained, Computing seminar at CERN,
http://indico.cern.ch/conferenceDisplay.py?confId=38458

P
o
S
(
A
C
A
T
0
8
)
0
8
1

Cooperation among ALICE Storage Elements: current status and directions Fabrizio Furano

 8

[7] Hanushevsky, A. Are SE architectures ready for LHC? In Proceedings of ACAT 2008: XII
International Workshop on Advanced Computing and Analysis Techniques in Physics Research,
http://acat2008.cern.ch/,
http://indico.cern.ch/contributionDisplay.py?contribId=227&sessionId=23&confId=34666

[8] F Furano and A Hanushevsky, Data access performance through parallelization and vectored access.
Some results. CHEP07: Computing for High Energy Physics. Journal of Physics: Conference Series
119 Volume 119 (2008) 072016 (9pp)

[9] ROOT: An Object-Oriented Data Analysis Framework, http://root.cern.ch

[10] Distributed Parallel Analysis Framework with PROOF, M. Ballintijn, R. Brun, F.
Rademakers and G. Roland, http://root.cern.ch/twiki/bin/view/ROOT/PROOF .

[11] A L I C E: Technical Design Report of the Computing, June 2005. ISBN 92-9083-247-9,
http://aliceinfo.cern.ch/Collaboration/Documents/TDR/Computing.html

[12] L. Betev, F. Carminati, F. Furano, C. Grigoras, P. Saiz. The ALICE computing model: an overview.
Third International Conference "Distributed Computing and Grid-technologies in Science and
Education", GRID2008, http://grid2008.jinr.ru/

[13] Authorization of Data Access in Distributed Storage Systems, D. Feichtinger, A.J. Peters,
The 6th IEEE/ACM International Workshop on Grid Computing, 2005,
http://ieeexplore.ieee.org/iel5/10354/32950/01542739.pdf?arnumber=1542739

