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The CMS Offline software contains a widespread set of algorithms to identify jets originating
from the weak decay of b quarks. Different physical properties of B hadron decays like lifetime
information, secondary vertices and soft leptons are exploited. The variety of selection algorithms
range from simple and robust ones, suitable for early data-taking and online environments as the
trigger system, to highly discriminating ones, exploiting all the information available. For the
latter, a generic discriminator computing framework has been developed that allows to exploit the

full power of multi-variate analysis techniques in a flexible way.
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1. Introduction

The ability to efficiently identify jets from the hadronisation of b quarks plays a crucial role
in many of the physics analyses at the LHC. This includes Standard Model signatures like bb or
tf production, Higgs production in association or decaying into bb pairs as well as e.g. SUSY
channels with 7 decays.

The b quark exhibits particular properties that make it possible to tag jets that contain B hadrons,
namely the lifetime (= 1.5 ps), mass (= 4.2 GeV/c?) and the high decay multiplicity (= 5 charged
tracks on average). Furthermore, the b quark decays weakly, giving rise to e and u* in 36% of
the cases and possibly also causing subsequent ¢ quark or T decays.

The constructable signatures exploited by the lifetime-based b-tagging algorithms are tracks
with significant impact parameters and secondary vertices. The CMS all-silicon tracking system [1]
with impact parameter resolutions of up to 10 um in the » — ¢ and 20 pum in the r — z plane is
particularly suited for this task.

2. Basic b-Tagging Algorithms

The simplest tagging algorithm directly utilises the measured impact parameters of the tracks.
In order to get the best possible handle on the compatibility of the track with the primary vertex,
the signed 3-D impact parameter significance is used, which is defined as sign - % The sign is
chosen depending on the hemisphere of the point of closest approach of the track to the primary
vertex with respect to the jet direction, so that tracks from decays with lifetime populate the positive
side. Quality cuts on the tracks stringently reject possible fake tracks (which tend to exhibit high
impact parameters) by requiring very well reconstructed tracks and a minimum distance of 0.7 mm
to the jet axis and an /P < 2 mm.

The “Track Counting” algorithms [2] choose the signed I.P. significance of exactly one track
per jet as algorithm discriminator, namely the one with the n'"
(the “High Efficiency” variant) or 3 (“High Purity”). Tracks are considered to lie inside the jet, if
the track momentum fulfills AR = \/A¢? + An? < 0.5 with respect to the jet axis. Figure 1 shows

the distribution of the discriminator, where the large positive tails for b-jets clearly stand out. This

-highest value in the jet, where n is 2

simple algorithm is also run in the time-critical CMS online high-level trigger.

The “Jet Probability” algorithm [2] goes a step further and takes all signed track I.P. signif-
icances in a jet into account. For each individual track, a probability is computed for the track
being compatible with the primary vertex by looking up a pdf, defined for different track quality
categories. These individual probabilities are then combined into a probability for the whole jet.
This algorithm is known to be among the most powerful ones. The downside, however, is that that
the pdf’s have to be carefully calibrated. The performance of the algorithm is depicted in figure 2.
Note that in the light flavour jets gluons are also included and their splitting into heavy flavour
quarks is excluded.

The “Simple Secondary Vertex* [3] algorithm uses the significance of the 3-D flight distance
distance between a reconstructed secondary and the primary vertex. The primary and secondary
vertices are reconstructed using an adaptive reconstruction algorithm using simulated annealing
techniques for robustness [4]. The performance of the algorithm is comparable to the “Track
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Figure 2: The performance of the “Jet Probability”
algorithm on an inclusive pp — tf sample

Counting” algorithm, but an outstanding property of this algorithm is its robustness with respect

to non-optimal alignment of the tracking system. This makes the algorithm particularly interesting

for early data-taking scenarios, as can be seen in figure 3.

The “Soft Lepton” algorithms [5] exist in different flavours and combine several variables from
areconstructed lepton inside the jet from a semi-leptonic b- or c-decay using a simple feed-forward
neural network. The most discriminating variables are the lepton’s L.P. and transverse momentum

with respect to the jet axis. Figure 4 shows the e™ and u* taggers, the latter with an additional

variant that does not include the lepton L.P. for the discriminator computation.
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3. Multivariate Analysis Techniques for Event Reconstruction

Within the CMS software environment (CMSSW), a dedicated abstraction layer allows the
transparent use of Multivariate Analysis Techniques for purposes of event reconstruction. Its mod-
ular implementation allows almost arbitrary combination and layering of variable transformations
in order to obtain a final discriminator. Very simple and commonly used techniques like linear dis-
criminants and Likelihood Ratios are available as built-in modules, as well as a set of standard pre-
processing techniques. More sophisticated algorithms, like Artificial Neural Networks or Boosted
Decision Trees, are available through third-party interface plugins, particularly to the Toolkit for
MultiVariate Analysis (TMVA [6]), a comprehensive MVA package that is bundled with ROOT [7].
The framework allows a seamless integration of these packages into the software environment, in-
cluding full access to to the CMS Conditions Database for storage and live retrieval of training
data. This allows to run natively inside the framework without requiring a separate intermediate
data format e.g. for training. The layout of the evaluation network is freely configurable via an
XML trainer description language, and an example is shown in figure 5.
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Figure 5: An example of how the MVA network Figure 6: The secondary vertex mass input vari-
layout is structured for the Artificial Neural Net- able for the “Combined Secondary Vertex” algo-
work variant of the “Combined Secondary Vertex” rithm

b-tagging algorithm

By feeding all variables computed by the low-level b-tagging algorithms listed in the previous
chapter into the MVA architecture, an algorithm exploiting all the possible physics content can
easily be constructed to provide a best-performing algorithm. One such example is the “Combined
Secondary Vertex” algorithm [8], which essentially combines most information available in the
event. This includes track variables like signed L.P. significances, but mainly, if available, secondary
vertex variables like flight distance significance, invariant mass (as shown in figure 6) and energy
fraction of the secondary vertex. The default version of the algorithm combines all variables using
a Likelihood Ratio with pdf’s in different categories. A variant using an Artificial Neural Network
is also available. If well trained, this algorithm yields a significant improvement over the already
well-performing “Jet Probability” tagger.
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A very different approach at combining discriminative information in order to obtain a more
efficient tagging algorithm is to combine the discriminators of existing algorithms based on com-
plementary physical input. For instance the output of the lifetime tags can be combined with the
output of the soft lepton tags. By using a neural network to combine the output of the “Combined
Secondary Vertex” tagger and the two e* and u* “Soft Lepton” tags, the b-tagging efficiency can
be increased from 60% to about 65% for the same light flavour mistag rate.

4. Conclusions

A comprehensive set of b-tagging algorithms are ready for use in CMS, based on impact
parameters, secondary vertices and soft leptons. The simple algorithms will play an important role
for the first data-taking, whereas later the discriminative power of Multivariate Analysis Techniques
will allow for the best possible b-tagging performance for discovery purposes.
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