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The ATLAS online trigger system has three filtering levels and relies very much on calorimeter

information, which is segmented into seven detection layers. Due to differences both in depth

and cell granularity of these layers, trigger algorithms may benefit from performing feature ex-

traction at the layer level. This work addresses electron/jet separation at the second level (LVL2)

filtering restricted to calorimeter data. Segmented Independent Component Analysis (SICA) is

applied over the calorimeter layers in order to extract relevant features for particle identification.

The number of independent components to be extracted from a Region of Interest (RoI) is es-

timated through different signal compaction strategies, such as Principal Component Analysis,

Nonlinear Principal Component Analysis and Principal Components for Discrimination. These

compaction techniques are evaluated with respect to dimensionality reduction (and processing

speed) and classification efficiency. The hypothesis testing is performed by a Multi-Layer Per-

ceptron classifier fed from the segmented independent components. It is shown that the proposed

discriminators outperform the baseline design for ATLAS second-level trigger system, achieving

a detection efficiency of 99% for a rejection factor smaller than 2%.
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1. Introduction

The Large Hadron Collider (LHC) is the most powerful particle accelerator ever built [1]. In
the search for new physics channels, the LHC will combine high energy levels (up to 14 TeV)
and high interaction rate (1 GHz when operating at high luminosity). Bunches of protons will
be accelerated and collisions are expected to occur at every 25 ns, generating a huge amount of
information. However, only a small fraction of these data will contain relevant information.

The ATLAS detector [2] is one of the general purpose experiments of the LHC. Considering
the LHC interaction rates and detector segmentation, 52 Tbytes/s will be produced (1.3 Mbyte per
collision). As it is impossible to record all detector data, an efficient online filtering system is
required to reject the background noise as much as possible while retaining most of the relevant
signatures. In ATLAS, the filtering (triggering) is performed through three cascaded filtering levels
[3].

For ATLAS, electron identification is a very important task, as Higgs signatures can be found
efficiently through decays that produce electrons [2]. The calorimeters provide an important in-
formation for electron identification, as they measure the energy deposition profiles for incoming
particles. The calorimeter system (see Figure1-a) is segmented into four electromagnetic (PS,
E1, E2 and E3) and three hadronic (H0, H1 and H2) layers, producing more than 100,000 readout
channels. Typical electrons present energy deposition profiles highly concentrated in the electro-
magnetic sections and no energy left in the hadronic layers. A huge background noise for electron
identification arises due to the existence of a class of hadronic jets which present energy deposition
profiles very similar to typical electrons.

In this work, the Independent Component Analysis (ICA) model [4] is applied to extract, from
ATLAS calorimeter signals, relevant features for electron identification. As a pre-processing step,
raw data from the calorimeter is formatted into concentric rings and, within each ring, the energy
is summed and normalized. The proposed method is applied at the second-level trigger (LVL2).
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Figure 1: ATLAS (a) sub-detectors and (b) triggering system architecture.
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2. ATLAS Trigger and Calorimetry Overview

The ATLAS filtering (trigger) system [3] comprises three sequential decision levels (see Figure
1-b), in which the amount of non-relevant signals retained in temporary memories is gradually re-
duced until the final storage/rejection decision is taken. The first-level is implemented in hardware,
as a very fast decision (within 2.5 ms) is required. The second-level (LVL2) and the event filter (EF)
are both implemented in software and processed in parallel by thousand of PC-like processors [3].
The latencies for LVL2 and EF are, respectively, 40 ms and 4 s.

The LVL1 uses detector information with coarse-grained granularity to identify the Regions
of Interest - RoI (detector regions where relevant interactions may have occurred). The LVL2 re-
ceives from the LVL1 RoI location and uses full calorimeter granularity to produce an accept/reject
decision for each incoming event. The particle discrimination procedure at LVL2 is split into two
phases: feature extraction, where relevant information is extracted from the measured signals, and
hypothesis testing, where particle discrimination is performed.

The baseline electron/jet discriminator at LVL2 (T2Calo) is based on classical statistical ap-
proach. Using calorimeter information, parameters from the energy shower are computed and the
comparison with thresholds (previously determined considering typical characteristics of electrons
and jets) allows particle identification.

Using a neural classifier fed from ring structured calorimeter data (ring construction process
will be described in the next section), an alternative electron/jet LVL2 trigger algorithm (Neural-
Ringer) was proposed in [5]. The Neural-Ringer is already operational at the HLT software plat-
form (ATHENA) and, if compared to T2Calo, presents higher discrimination efficiency.

3. Segmented ICA-based Calorimeter Trigger

As proposed in [5], calorimeter (Region of Interest) RoI data is pre-processed and formatted
into concentric energy rings (see Figure2-a). For each calorimeter layer, the most energetic cell is
considered as the first ring. The next rings are sequentially formed around the first one (this process
goes on in a fixed size area of0.4×0.4 in theη×φ plane, centered at the most energetic cell, which
is assumed to carry enough physics for particle characterization). Finally, ring signals are obtained
by summing the energy of the cells belonging to a given ring. The ring energy is normalized within
each layer through a sequential normalization procedure. The normalized energy of ringi at layer
L (E(N)

Li ) is defined as:

E(N)
Li =

ELi
I

∑
j=i

EL j

(3.1)

where the sum runs fromi = 1 andi = I , are respectively the central (first) ring and the outermost
(last) ring. This procedure aims to emphasize the influence of the outer rings (on a per layer basis),
which was proved to improve electron/jet discrimination efficiency [5].

Ring signals from each layer are arranged together into a single vector. Considering this
0.4×0.4 region in theη×φ plane, the total number of rings (built up from the seven calorimeter
layers) amounts to 100.
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Figure 2: (a) Ring built-up procedure, (b) ring-formatted signature of typical electron and (c) jet. Here,
calorimeter layers are limited by vertical dotted lines.
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Figure 3: Proposed Segmented ICA-based classifiers.

This procedure makes signal description independent from the impact point in the detector,
compacts RoI information by a factor of 6 (from≈ 600 cells up to 100 rings) and preserves the
energy deposition profile. Ring signals from typical electron and jet are illustrated in Figure2.
One can see that the signal (electron) and background noise (jet) present similar patterns and their
discrimination is not a trivial task.

As illustrated in Figure3, signal compaction algorithms are applied to the ring structure in
order to reduce signal dimensionality. This allows more accurate estimation of the independent
components and a faster trigger decision (as fewer information is required at the hypothesis testing).
In order to cope with different characteristics of each calorimeter layer, such as cell granularity
and sensing elements, in this work, the feature extraction procedure (ring construction + signal
compaction + ICA) is performed in a segmented way (at the layer level). For the hypothesis testing
phase, a supervised MLP neural network [9], fed from the segmented independent components
(SIC), is used. The SIC (yi) from layer i (i=PS, E1, E2, E3, H0, H1 and H2) were concatenated into
a single vectorY = [yPS, ...,yH2]T , which was used as the input to the neural discriminator. Details
of each processing block are given in the next sub-sections.

3.1 Independent Component Analysis

Independent Component Analysis (ICA) is a multidimensional (linear) signal processing tech-
nique that searches for a transformation of data, so that their essential structure becomes somehow
more accessible [4]. For this, the transformed variables are restricted to be statistically independent.

In the ICA model, the measured signalsx = [x1,x2, ...,xK ]T are considered to be generated
through a linear combination of the independent source signalss= [s1,s2, ...,sN]T :

x = As, (3.2)

whereA is the mixing matrix. For the standard case N=K and thusA is square. The ICA model
has been widely applied in a variety of signal processing tasks [6].
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The purpose of ICA is to estimate the source signals and the mixing matrixA using only the
observed datax. This can be achieved through an inverse model [4]:

y = Wx, (3.3)

where the coefficients of estimated matrixW are obtained by considering that the source signals are
statistically independent (or at least as independent as possible). Ify = s the sources are perfectly
recovered and thusW = A−1.

There are many mathematical methods for calculating the coefficients of matrixW. Consider-
ing two random vectorsy1 andy2, they are statistically independent if and only if [7]:

py1,y2(y1,y2) = py1(y1)py2(y2) (3.4)

where py1(y1), py2(y2) are respectively the probability density function (pdf) ofy1 and y2 and
py1,y2(y1,y2) is their joint pdf. In typical blind signal processing problems, there is very little in-
formation on the source signals and so the pdf estimation is a very difficult task. Considering this,
alternative independence measures (derived from the central-limit theorem, the nonlinear decor-
relation property and also from the information theory) are usually applied during the search for
independent components [4].

There are some indeterminacies in the ICA model: the order of the extracted components
can change and scalar multipliers (positive or negative) may modify the estimated components.
Fortunately, these limitations are insignificant in most applications. In this work, the FastICA
algorithm [6] was applied for independent component estimation.

3.2 Signal Compaction

In our particular problem, it is not expected that the number of sources (i.e. independent
components) is as large as the number of observed signals (100 rings). Considering this, signal
compaction is performed as a pre-processing step for ICA. The aim is to reduce the number of sig-
nals from K=100 (total number of rings) to N (number of independent components to be estimated),
where it is expected that N¿100.

In this work, three different compaction strategies were applied to the ring signals: Principal
Component Analysis (PCA), Nonlinear Principal Component Analysis (NLPCA) and Principal
Components for Discrimination (PCD).

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [8] is a statistical signal processing technique which
looks for a linear representation of the input signals in which the energy is often concentrated on a
small number of components. This signal representation technique uses second order statistics to
search for a subspace where the projectionszi = bixi (i=1,...,K) of a zero-mean random vectorx in
directionbi are non-correlated.

The first directionb1, can be computed through the maximization of equation3.5[4]:

JPCA
1 (b1) = E[z2

1] = E[(bT
1 x)2] = bT

1 Cxb1, (3.5)

5



P
o
S
(
A
C
A
T
0
8
)
1
0
2

Optimized Signal Compaction for an ICA based ATLAS Electron/Jet Second-Level TriggerJosé M. Seixas

X ... ...

...
......

X
^

Mapping De-mapping

Bottleneck

z

x1

x2

...

xk

z...

b1,1

bk,n

w1

wn

y1

y2

yn

Frozen
To be estimated

x1

x2

...
xk

z

b1

bk

w1

y1

(a) (b) (c)

Figure 4: Neural models do estimate (a) NLPCA, (b) the first PCD and (c) the n-th PCD.

whereCx is the covariance matrix ofx. The PCA for the vectorx is equivalent to the eigenvalue
decomposition of the matrixCx [9]. In the PCA transformation, components are sorted according
to their energy, with the first component being the most energetic one (i.e. maximum variance).
Signal compaction is obtained by retaining only the first N components (typically, N¿K).

3.2.2 Nonlinear Principal Component Analysis

Nonlinear Principal Component Analysis (NLPCA) is a nonlinear extension of PCA. In NLPCA,
the mapping from measured datax to principal component vectorz is not restricted to be linear:

z = F(x), (3.6)

whereF(.) is aRK →RN nonlinear mapping (N¿K). Through NLPCA, one usually obtains higher
variance concentration in the initial components with respect to PCA [10].

One way to estimate the nonlinear principal components is through auto-associative neural
networks [11]. A multi-layer perceptron (MLP) comprising three hidden layers (see Figure4-a)
is trained using the input vectors as targets. After training convergence, the nonlinear principal
components are the bottleneck layer outputs.

When using NLPCA compaction scheme, there are basically two parameters to adjust, the
number of bottleneck neurons (i.e. the number of nonlinear principal components - N) and the
number of mapping neurons (MN). For proper data representation, it is often required that MNÀN.

3.2.3 Principal Components for Discrimination

Considering a classification problem, the purpose of PCD analysis is to obtain a linear projec-
tion of the input signalsx = [x1,x2, ...,xK ]T that maximizes class separation and data compaction
rate simultaneously [12]. The discriminating componentsy = [y1,y2, ...,yN]T (usually N¿K) can
be expressed as:

y = Bx (3.7)

The PCD extraction can be performed through a MLP neural network [9]. For simplicity,
considering a binary discrimination process, a network with a single hidden neuron, trained to
maximize class discrimination, extracts the first discriminating component (see Figure4-b). By
sequentially adding neurons to the hidden layer and restarting the training procedure, the next
components are estimated. The hidden layer weights are trained only for the added neurons (high-
lighted synaptic lines in Figure4-c). The estimated weights from the previous steps are kept fixed,
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as they represent the directions of the principal components already extracted. The weights of
the output layer are adjusted during the training procedure for optimal combination of principal
component information at each processing step.

3.3 Hypothesis Testing

Here, the hypothesis testing phase at LVL2 is performed by a neural classifier fed from the
segmented independent components. The available data set is divided into training, testing and
validation sets. The Resilient Back-propagation (R-PROP) [13] algorithm is used in this work to
train the MLP classifiers. The network comprises a single hidden layer and one output neuron. The
optimum number of hidden neurons (NH) was chosen through the following procedure:

1. Set NH=1;

2. test the discrimination efficiency for five different initializations and chose among them, the
network with best discrimination performance (NETNH);

3. set NH=NH+1 and repeat step 2;

4. repeat step 3 until there is no performance improvement by adding hidden neurons.

When this iteration finishes, chose among NETNH the value of NH that produces best separation
efficiency.

4. Results

A simulated database comprising approximately 450,000 electron and 450,000 jet signatures
was used to design and test the proposed discriminators for the ATLAS LVL2 trigger. Level-one
trigger selection and instrumentation noise effects were considered in these simulations. Here,
the performance comparison is performed through the ROC (Receiver Operating Characteristics)
curve and SP (Sum-Product) index. The ROC [14] displays how both the detection and false
alarm probabilities, respectively PD (probability of identifying correctly an incoming electron) and
PF (probability of assuming that an incoming jet is an electron), vary as the decision threshold
changes. The SP index is defined as [5]:

SP=
E fe+E f j

2
×

√
(E fe×E f j) (4.1)

whereE fe = PD is the detection efficiency for electrons andE f j = (1−PF) is the corresponding
efficiency for jets. The threshold value that maximizes SP can be considered optimal for trigger
operation as it provides both highPD and lowPF .

If PCA is applied for signal compaction, it is necessary to determine the optimum number of
retained components. In order to do this, the ring structure was compacted using different energy
retention levels. For each situation, segmented ICA was computed and used to feed the neural
classifier. The number of segmented principal components retained and the SP indexes for different
energy preservation levels are depicted, respectively, in Table1 and Figure5-a. It can be seen that
the SP starts to decrease significantly for energy retention levels lower than 50%. Considering this,
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Table 1: Preserved components for different SPCA energy retention levels.
Retained Energy (%)

Layer 100 99 95 90 85 80 75 60 50 40 30 20
PS 8 7 7 7 6 6 5 4 3 2 1 1
E1 64 62 54 45 36 29 22 15 10 4 3 1
E2 8 7 6 5 4 4 3 2 1 1 1 1
E3 8 7 7 6 6 5 5 4 3 2 1 1
H0 4 3 3 3 3 3 2 2 2 1 1 1
H1 4 3 3 3 3 3 2 2 2 1 1 1
H2 4 3 3 3 3 3 2 2 2 1 1 1

Total 100 92 83 72 61 53 41 31 23 12 9 7

Table 2: Number of PCD and respective SP for each calorimeter layer.
PS E1 E2 E3 H0 H1 H2 Total

NPCD 6 4 5 4 3 3 3 28
SP 0.685 0.960 0.917 0.674 0.767 0.652 0.4570.980
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Figure 5: (a) SP versus PCA total energy retention levels and (b) energy retention at PS calorimeter layer
for different NLPCA network architectures.

it is possible to achieve almost the same efficiency as the Neural-Ringer (which uses 100 rings)
using only 23 principal components. The number of hidden neurons used for classification also
decreased from nine to five, respectively for the Neural Ringer and the PCA-based discriminator.

Considering NLPCA signal compaction, in this work, the optimum network architecture was
chosen considering parameters like energy retention and SP index, through a procedure similar to
the one applied for PCA. In Figure5-b, the energy retention level is computed varying the number
of bottleneck (NB) and mapping neurons (for PS layer). The same procedure was repeated for the
other six layers. The highest SP obtained with a NLPCA discriminator was 0.969, and the total
number of segmented nonlinear principal components was 35.

Here, PCD networks were applied to the ring structure in a segmented way. The number
of principal components for discrimination, and the respective SP, estimated for each layer are
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Figure 6: ROC curves.

Table 3: Efficiency for different discriminators, N is the number of components used to feed the neural
classifier.

SICA+PCD SICA+PCA Neural Ringer SICA+NLPCA T2Calo
SP 0.980 0.976 0.976 0.969 0.853

PD(%) 98,9 97,6 97,5 97,1 96,1
PF(%) 1,6 1,8 1,7 2,3 11,3

N 28 23 100 35 -

illustrated in Table2. It can be seen that the total number of PCD is 28 (producing SP=0.980).

A performance comparison between the proposed discriminators is shown in Figure6 and
Table 3.It can be seen that the highest efficiency was achieved through the PCD method (us-
ing 28 components). PCA pre-processing produced highest signal compaction (23 components,
SP=0.976) and NLPCA produced lower levels of compaction and discrimination performance (35
components, SP=0,969).

Considering the processing time requirements for the ATLAS second-level trigger (latency
time smaller than 10 ms), the computational performance of T2Calo and the Neural Ringer were
compared using ATHENA implementations. The total processing times (considering feature ex-
traction and decision) were 860µs for T2Calo and 972µs for the Neural Ringer (13% higher,
but still within LVL2 requirements). A simple comparison with the Neural Ringer indicates that
the HLT requirements should be satisfied for the proposed discriminator. Through the proposed
approach, a signal compaction block will reduce significantly the number of inputs for the neural
classifier, contributing for processing speed improvement during classification. Furthermore, con-
sidering PCD compaction, only a matrix multiplication is added in the signal processing routine
(the ring signals are multiplied byC = W×B, whereB andW are respectively the PCD and ICA
matrices), and thus no considerable increase in the computational effort is expected.

5. Conclusions

An alternative second-level trigger algorithm based on independent component analysis is pro-
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posed in this work for the electron/jet channel of ATLAS detector. The proposed feature extraction
procedure operates over calorimeters information and comprises ring structure construction, signal
compaction and estimation of the independent components. An artificial neural network discrimi-
nator, fed from the independent components, is used for hypothesis testing. Through the proposed
method, an electron efficiency of approximately 99% was achieved for less than 2% false alarm,
outperforming the baseline discriminator in use.
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