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1. Introduction

One of a basic problems in science is how best to consolidate data from several experiments
that are designed to measure the same unknown quantity. These experiments may differ in time,
geographical location, and laboratory apparatus, and may also differ in underlying theory. The
following quotation seems quite relevant: "Suppose one experiment sees a 3-sigma effect and
another experiment sees a 4-sigma effect. What is the combined significance? Since the question
is ill-posed, the statistics literature contains many papers on the topic ?" [1].

Methodology for combining findings from repeated studies did in fact begin with the idea
of combining independent tests back in the 1930’s (Tippett,1931 [2]; Fisher, 1932 [3]; Pearson,
1933 [4]). There are many approaches to this subject. Many ofthem is discussed in cited above
review of R. Cousins [1].

We consider the using of one (Stouffer et al., 1949 [5]) of these methods for combining of
significances. We show the applicability of this method in the case of Poisson flows of events
under study. We also discuss the approach based on confidencedistributions. This approach shows
an applicability of Stouffer’s method for combining of significances under certain conditions.

2. Combination of tests

In this Section we follow the content and ideas presented in Workshop on Meta Analysis [6]
(Tampere-Turku, 2006). Meta-analysis, a term coined by Glass [7], is intended to provide the
statistical analysis of a large collection of analysis results from individual studies for the purpose
of integrating the findings.

All the methods of combining tests depend on what is known as aP−value. A key point is that
the observedP−values derived from continuous test statistics follow a uniform distribution under
the null hypothesisH0 regardless of the form of the test statistic, the underlyingtesting problem,
and the nature of the parent population from which samples are drawn.

Quite generally, supposeX1, . . . ,Xn is a random sample from a certain population indexed
by the parameterθ , andT(X1, . . . ,Xn) is a test statistic for testingH0 : θ = θ0 againstH1 : θ >

θ0, whereθ0 is a null value, and suppose also thatH0 is rejected for large values of observed
T(x1, . . . ,xn). Then if the null distribution ofT(X1, . . . ,Xn) is denoted byg(t), the (one-sided)
P−value based onT(X1, . . . ,Xn) is defined as

P =
∫ ∞

T(x1,...,xn)
g(t)dt = P[T(X1, . . . ,Xn) > T(x1, . . . ,xn)|H0] (2.1)

which stands for the probability of observing as extreme a value of statisticT(X1, . . . ,Xn) as the
observed oneT(x1, . . . ,xn) under the null hypothesis. Herex1, . . . ,xn denote the observed realiza-
tion of theXi ’s. Since the null hypothesisH0 is rejected for large values ofT(x1, . . . ,xn), this is
equivalent to rejectH0 for small values ofP.

In most meta analysis applications, theP−values are computed from the approximate nor-
mal distribution of the relevant test statistics. Thus, ifT(X1, . . . ,Xn) is approximately normally
distributed with meanµ(θ) and varianceσ2(θ ,n), theP−value is computed as
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P = P[T(X1, . . . ,Xn) > T(x1, . . . ,xn)|H0] = P[N(0,1) >
T(x1, . . . ,xn)−µ(θ0)

σ(θ0,n)
]. (2.2)

In general we can considerk different studies in which test problemsH0i versusH1i are con-
sidered,i = 1, . . . ,k. A combined test procedure tests the global null hypothesis

H0 : All H0i true i = 1, . . . ,k

versus the alternative

H1 : Some o f the H1i true.

There are two general properties of a combined test procedure:

• admissibility: a combined test procedure is said to be admissible if it provides a (not neces-
sarily the only) most powerful test against some alternative hypothesis for combining some
collection of tests;

• monotonicity: a combined test procedure is said to be monotone if the combined test pro-
cedure rejects the null hypothesisH0 for one set ofP−values and it must also reject the
hypothesis for any set of component-wise smallerP−values.

As shown in [8]: every monotone combined test procedure is admissible and therefor optimal
for some testing situation.

Two broad classes of combined tests based on theP−values:

• uniform distribution methods, e.g. Tippett’s method [2] and Wilkinson’s method [9];

• probability transformation methods, e.g. Stouffer’s method [5], Fisher’s method [3], and
logit method [10].

Here we provide a comprehensive review of these so-called omnibus or non-parametric statis-
tical methods1. Each of the methods described below satisfies the monotonicity principle.

Minimum P method. Tippett’s [2] minimumP test rejects the null hypothesisH0 if any of
thek P−values is less thanα∗, whereα∗ = 1− (1−α)

1
k . In other words, we rejectH0 if

min(P1, . . . ,Pk) = P[1] < α∗ = 1− (1−α)
1
k . (2.3)

Wilkinson’s method. This method, due to Wilkinson [9], rejectsH0 if the rth smallest
P−value, P[r ] is small, i.e., less than somec for some fixedr. Since underH0, P[r ] follows a
beta distribution with the parametersr andk− r +1, it is easy to determine the cut-off pointc for
this test from the following equation:

1The problem of selecting a test forH0 is complicated by the fact that there are many different waysin which the
omnibus null hypothesisH0 can be false.
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α =
∫ c

0

ur−1(1−u)k−r

B(r,k− r +1)
du, (2.4)

whereB(., .) is the usual beta function.
Stuffer’s method. This method is due to Stouffer and his colleagues [5], also called inverse

normal method. It is based on the fact that thez−value based on theP−value, defined as

z̃= Φ−1(P) (2.5)

is a standard normal variable under the null hypothesisH0, whereΦ(.) is a standard normal cu-
mulative distribution function (cdf). Thus, when theP−valuesP1, . . . ,Pk converted to the ˜z−values
z̃1, . . . , z̃k, we have independent identically distributed (iid) standard normal variables underH0.
The combined significance test is essentially based on the sum of these ˜z−values, which has a
normal distribution under the null hypothesis with mean 0 and variancek. The test statistic

Z̃ =

k

∑
i=1

z̃(Pi)

√
k

(2.6)

is thus a standard normal variable underH0, and hence can be compared with the critical values in
the standard normal table.

Some authors (see next Section) suggest to compute thez scores fromP−values by using the
formula

z= Φ−1(1−P). (2.7)

If this is done, the resulting value, sayZ−value, i.e. significance of an enhancement, will be large
for small values ofP, implying thereby thatH0 is rejected whenZ is large.

Fisher’s method.This method, which is is a special case of the inverse chi-square transform,
was described by Fisher [3], and is widely used in meta analysis. This method is based on the fact
that the variable−2lnP is distributed as a chi-square variable with 2 degrees of freedom under the
null hypothesis wheneverP has a uniform distribution. The sum ofk of these values is therefore a

chi-square variable with 2k degrees of freedom underH0. The test thus rejectH0 when−2
k

∑
i=1

lnPi

exceeds the 100(1−α)% critical value of the chi-square distribution with 2k degrees of freedom.
Logit method. George [10] proposed this method using a statistic

G = −
k

∑
i=1

ln(
Pi

1−Pi
)[

kπ2(5k+2)

3(5k+4)
]−

1
2 (2.8)

as another combined significance technique. The argument isthat the logit (i.e.,ln
P

1−P
is dis-

tributed as a logistic variable underH0, and further that the distribution of the sum of the logits,
suitable normalized, is close to thet distribution. There are usually two approximations of the null
distribution ofG which can be used. First, we can approximate the null distribution ofG with thet
distribution based on(5k+4) degrees of freedom. The test based on this approximation rejectsH0

if G exceeds the 100(1−α)% critical value of thet distribution with(5k+4) degrees of freedom.
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Another approximation is based on the observation that, under H0, ln(
Pi

1−Pi
) could be viewed as

approximately normal with a zero mean and variance of
π2

3
. The test based on this approximation

therefore rejectsH0 when

G = −[
k

∑
i=1

ln(
Pi

1−Pi
)][

3
kπ2 ]

1
2 (2.9)

exceedszα .
There is no general recommendation for the choice of the combination method. All the com-

bination methods are optimal for some testing situations. Note, combiningP−values can lead to
incorrect conclusions because

• acceptance or rejection can depend more on the choice of the statistic than on the data,

• the information in a highly informative experiment can be masked, and thereby largely dis-
regarded.

A P−value itself is not as informative as the estimate and standard error on which it is based. If
this more complete summary information about a study is available, it makes good sense to use it
and avoidP−values altogether. However, methods that combineP−values have their place when
such precise information is unavailable.

3. Zoo of significances of an enhancement

“Common practice is to express the significance of an enhancement by quoting the number of
standard deviations” [11]. Let us define a significanceZ (in high energy physics the significance
often is denoted asS) in accordance with Eq.2.7 [1]

Z = Φ−1(1− p) = −Φ−1(p), (3.1)

where

Φ(Z) =
1√
2π

∫ Z

−∞
e

−t2
2 dt =

1+er f( Z√
2
)

2
, (3.2)

so that
Z =

√
2er f−1(1−2p). (3.3)

For example,Z = 5 corresponds to ap−value of 2.87·10−7. One can see the relation between some
probability p, which estimates the uncertainty in hypotheses testing, and with the corresponding
number of standard deviationsZ in the frame of standard normal distribution.

Z characterizes the significance of the deviation of one valuefrom another value (for example,
signals+ backgroundb from backgroundb). The choice of significance to be used depends on the
study. There are three types of significances.

A. If sandb are expected values then we take into account both statistical fluctuations of signal
and of background. Before observation we can calculate onlyan expected (or an internal)
significanceZ which is a parameter of experiment.Z characterizes the quality of experiment.

5
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B. If ŝ+b is observed value andb is expected value then we take into account only the fluc-
tuations of background. In this case we can calculate an observed significanceẐ which is
an estimator of expected significance of experimentZ. Ẑ characterizes the quality of experi-
mental data.

C. If ŝandb̂are observed values with known errors of measurement then wecan use the standard
theory of errors for estimation of the significance of enhancement of signal.

Different significances are used. For example, the significancesZBi (Binomial) =ZΓ (Gamma),
ZN (Bayes Gaussian),ZPL (Profile Likelihood) were studied in details in paper [12]. As shown in
ref. [13] two types (case A and case B) of significances can be considered under certain conditions
as normal random variables with variance close to 1. The significancesSc12 andZN (ScP in HEP)
satisfy this property.

• Sc12 [14] corresponds to the case of hypotheses testing of two simple hypothesesH0 : θ = b
againstH1 : θ = s+b, whereSc12 = 2(

√
s+b−

√
b) is an expected significance (case A).

• ZN as proposed in ref. [15] is the probability from Poisson distribution with meanb to observe
equal or greater thans+ b events, converted to equivalent number of sigmas of a Gaussian
distribution. It is the case of hypotheses testing withH0 : θ = b againstH1 : θ > b. OftenZN

is used as observed significance (case B).

Let us show the applicability of the Stouffer’s method to combining of significances. We present
here only the results forSc12. Results forZN (ScP) [13] are analogous.

4. The Monte Carlo study of combining significances

Let us consider the distributions of possible values of observed significancêSc12 for experiment
without signal due to fluctuation of background. Distributions of observed̂Sc12 in the case of
signal absence for 3· 106 simulated experiments for several values of expectedb (b = 40, 50,
60, 6, correspondingly) are presented in Fig. 1 (left). The tests allow to say in our case that this
significance under hypothesisH0 : s= 0 obeys the standard normal distribution in wide range of
values ofb.

We use the method which allows to connect the magnitude of theobserved significance with
the confidence density (this notion is introduced in next Section) of the parameter "the expected
significance". We carried out the uniform scanning of expected significanceSc12, varyingSc12 from
1 up to 16, using step size 0.075. By playing with the two Poisson distributions (with parameters
s andb) and using 3·105 trials for each value of expectedSc12 we construct the conditional dis-
tributions of the probability of the production of the observed value of significancêSc12 by the
experiments with expected significanceSc12. Integrated luminosity of each experiment is a con-
stants+b. The parameterss andb are chosen in accordance with the given expected significance
Sc12, the realizationNobs (or ŝ+b) is a sum of realizationsNs (or ŝ) andNb (or b̂).

The distributions of observed significanceŜc12 for several values of expected significanceSc12

(with the given integrated luminositys+ b = 70) are presented in Fig. 1 (right). The observed

6
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Figure 1: Distributions of observed̂Sc12 in the case of signal absence for 3· 106 simulated experiments
for several values of expectedb (left). The distributions of observed significanceŜc12 for several values of
expected significanceSc12 with the given integrated luminositys+b= 70 (right).

distributions of significances are similar to the distributions of the realizations of normal distributed
random variable with variance which close to 1.

The distribution of the observed significanceŜc12 versus the expected significanceSc12 shows
the result of the full scanning (Fig.2 (left)). The normal distributions with a fixed variance are
statistically self-dual distributions [16]. It means thatthe confidence distribution of the parameter
"expected significance"Sc12 has the same distribution as the random variable which produced a
realization of the observed significanceŜc12 (compare Fig. 1 (right) and Fig. 2 (right)).

The several distributions, which characterize the probability (after normalization) of the ex-
pected significancesSc12 to produce the given observed values ofŜc12, are presented in Fig. 2
(right). These figures clearly show that the observed significanceŜc12 is an unbiased estimator of
the expected significanceSc12.

The observed significancêSc12 (the case of the Poisson flow of events) is a realization of
the random variable which can be approximated by normal distribution with variance close to 1
(for example, it is a standard normal distributionN (0,1) in the case of pure background without
signal). It means that with this observed significance one can work as with the realization of the
random variable.

Let us define the observed summary significanceẐsum, the observed combined significance
Ẑcomb and the observed mean significanceẐmean for the k partial observed significanceŝZi with
standard deviationσ(Zi) ∼ 1:

Ẑsum=
k

∑
i=1

Ẑi, σ2(Ẑsum) =
k

∑
i=1

σ2(Zi), (4.1)

7
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Figure 2: The distributions of observed significanceŜc12 for several values of expected significanceSc12

with the given integrated luminositys+b = 70 (left). The distributions of the expected significances,which
produced the given observed significanceŜc12. These distributions after normalization are conditionalprob-
ability distributions (confidence densities) of the expected significancesSc12 to produce the given observed
significance (right).

Ẑcomb=
Ẑsum√

σ2(Ẑsum)
, (4.2)

Ẑmean=
Ẑsum

k
. (4.3)

The ratio of the sum of the several partial observed significances and the standard deviation
of this sum is the estimator of the combining significance of several partial observed significances.
The formula 4.2 is essentially the formula of Stouffer’s method, becauseσ(Zi) ∼ 1 and, corre-

spondingly,
√

σ2(Ẑsum) ∼
√

k.

It can also be shown by a Monte Carlo simulation. Let us generate the observation of the
significances for four experiments with different parameters b andssimultaneously. The results of
this simulation (3·105 trials) for each experiment are presented in Fig. 3 (left). The distribution of
the sums of four observed significancesŜc12i , i = 1,4 of experiments (i.e.̂Zsum) in each trial and
the distribution ofẐcomb in each trial is shown too (Fig. 3 (right)).

Note, the combination of partial significancesZ1 andZ2 combine with third partial signifi-
cancesZ3 according to formula

Z1 +Z2√
2

·
√

2√
3

+Z3 ·
1√
3

=
Z1+Z2+Z3√

3
. (4.4)

The problem of weights is discussed in ref. [17] in details.
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Figure 3: The results of the simulation (3· 105 trials) of the observed significancêSc12 for four different
experiments (left). The distribution of thêZsum (right, up) and the distribution of thêZcomb (right, down)
which are produced in each of trials.

5. Combining information from independent sources throughconfidence
distributions

In this Section we follow the results presented in paper [18]. SupposeX1,X2, . . . ,Xn are n
independent random draws from a populationF andχ the sample space corresponding to the data
setXn = (X1,X2, . . . ,Xn)

T . Let θ be a parameter of interest associated withF (F may contain other
nuisance parameters), and letΘ be the parameter space.

Definition: A function Hn(·) = Hn(Xn,(·)) on χ ×Θ → [0,1] is called aconfidence distribu-
tion (CD) for a parameterθ if
(i) for each givenXn ∈ χ , Hn(·) is a continuous cumulative distribution function;
(ii) at the true parameter valueθ = θ0,Hn(θ0) = Hn(Xn,θ0), as a function of the sampleXn, has
the uniform distribution U(0,1).

We call, when it exists, hn(θ) = H
′
n(θ) a confidenceor CD density.

Item (i) requires the functionHn(·) to be a distribution function for each given sample.

Item (ii) states that the functionHn(·) brings the information onto probability scale and thus
provides confidence intervals andp−values.

The notion of a CD is attractive for the purpose of combining information. The main reasons
are that the CDs are relatively easy to construct and interpret and there is a wealth of information
on θ inside a CD.

Let H1(y), . . . ,Hk(y) bek independent CDs, with the same true parameter valueθ0. Suppose
gc(U1, . . . ,Uk) is any continuous function from[0,1]k to R that is monotonic in each coordinate. A
general way of combining, depending ongc(U1, . . . ,Uk) can be described as follows:

9
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DefineHc(U1, . . . ,Uk) = Gc(gc(U1, . . . ,Uk)), whereGc(·) is the continuous cumulative distribution
function ofgc(U1, . . . ,Uk), andU1, . . . ,Uk are independentU(0,1) distributed random variables.

DenoteHc(y) = Hc(H1(y), . . . ,Hk(y)). It is easy to verify thatHc(y) is a CD function for the
parameterθ . Hc(y) is a combined CD.
Let F0(·) be any continuous cumulative distribution function andF−1

0 (·) be its inverse function. A
convenient special case of the functiongc is

gc(U1, . . . ,Uk) = F−1
0 (U1)+ . . .+F−1

0 (Uk).

In this case,Gc(·) = F0 ∗ . . . ∗ F0(·), where∗ stands for convolution. Just like thep-value
combination approach, this general CD combination recipe is simple and easy to implement. Some
examples ofF0 are:

• F0(t) = Φ(t) is the cumulative distribution function of the standard normal distribution. In
this case

HNM(y) = Φ(
1√
k
[Φ−1(H1(y))+ . . .+ Φ−1(Hk(y))]).

This formula leads to simple Stouffer’s formula for combined p−values [5].

• F0(t) = 1−e−t , for t ≥ 0, is the cumulative distribution function of the standard exponential
distribution (with mean 1). In this case the combined CD is

HE1(y) = P(χ2
2k ≤−2

k

∑
i=1

log(1−Hi(y))),

whereχ2
2k is aχ2-distributed random variable with 2k degrees of freedom2.

• F0(t) = 1
2et1(t≤0) +(1− 1

2e−t)1(t≥0), denoted asDE(t) from now on, is the cumulative dis-
tribution function of the standard double exponential distribution. Here1(·) is the indicator
function. In this case the combined CD is

HDE(y) = DEk(DE−1(H1(y))+ . . .+DE−1(Hk(y))),

whereDEk(t) = DE∗ . . . ∗DE(t) is a convolution ofk copies ofDE(t) 3.

One can see, that this approach also leads to the formula of Stouffer for the case of combining
of normal distributed significances.

2It is the Fisher’s omnibus method [3].
3Combining the double exponential maximizes Bahadur slope.

10



P
o
S
(
A
C
A
T
0
8
)
1
1
8

Two approaches to Combining Significances Sergey Bityukov

6. Conclusion

As shown, the Stouffer’s method of combining significances works for significances which
obey the normal distribution. The significancesSc12, ZN, ZBi, andZPL satisfy to the criterion of
normality in wide range of valuess andb in Poisson flows.

The choice of the combination method depends on many factors. As seems, the confidence
distributions are often convenient for combining information from independent sources. This ap-
proach also leads to the Stouffer’s formula in our case.

Note, any of methods for combiningP−values, which is discussed in ref. [1], can be used for
combining significances.

Acknowledgments

We are grateful to V. Gavrilov, V. Ilin, A. Kataev, V. Katchanov, and V. Matveev for the interest
and support of this work. We thank R.D. Cousins, S. Gleyzer, Yu. Gouz, K. Singh, C. Wulz and
M. Xie for useful discussions. S.B. would like to thank the Organizing Committee of ACAT 2008
for hospitality and support.

References

[1] R.D. Cousins,Annotated Bibliography of Some Papers on Combining Significances or p -values,
arXiv:0705.2209 [physics.data-an].

[2] L. Tippett,The Methods of Statistics, Williams and Norgate, Ltd., London, 1st edition. Sec. 3.5,53-6,
1931, as cited by Birnbaum and by Westberg.

[3] R.A. Fisher,Statistical Methods for Research Workers, Hafner, Darien, Connecticut, 14th edition,
1970. The method of combining significances to have appearedin the 4th edition, Oliver & Boyd,
1932.

[4] K.Pearson,On a method of determining whether a sample of size n supposedto have been drawn from
a parent population having a known probability integral hasprobably been drawn at random,
Biometrika, 25(3/4)(1933) 379-410.

[5] S. Stouffer, E. Suchman, L. DeVinnery, S. Star, and R.W. Jr, The American Soldier, volume I:
Adjustment during Army Life. Princeton University Press, 1949.

[6] Workshop on meta analysis, Un.of Tampere, Un. of Turku, October 4-6, 2006, Instructors: B. Sinha,
G. Knapp, L. Koskela, 2006.

[7] G.V. Glass,Primary, secondary, and meta-analysis, Educational Researcher, 5, 3-8, 1976.

[8] A. Birnbaum,Combining independent tests of significance, J. of the American Statistical Association,
49, 559-575, 1954.

[9] B. Wilkinson,A statistical consideration in psychological research, Psychological Bulletin, 48,
156-158, 1951.

[10] E.O. George,Combining independent one-sided and two-sided statistical tests – Some theory and
applications. Doctoral dissertation, Un. of Rochester, 1977.

11



P
o
S
(
A
C
A
T
0
8
)
1
1
8

Two approaches to Combining Significances Sergey Bityukov

[11] A.G.Frodesen, O.Skjeggestad, H.Toft,Probability and Statistics in Particle Physics,
UNIVERSITETSFORLAGET, Bergen-Oslo-Tromso, p.97, 1979.

[12] R.D. Cousins, J.T. Linnemann, J. Tucker,Evaluation of three methods for calculating statistical
significance when incorporating a systematic uncertainty into a test of the background-only
hypothesis for a Poisson process, Nucl.Instr.&Meth., A595, 480-501, 2008.

[13] S. Bityukov, N. Krasnikov, A. Nikitenko,On the Combining Significances,arXiv:
physics/0612178.

[14] S.I. Bityukov, N.V. Krasnikov,New physics discovery potential in future experiments, Mod.Phys.Lett.
A13, 3235-3249, 1998.

[15] I. Narsky,Estimation of upper limits using a Poisson statistic, Nucl.Instr.&Meth., A450, 444-455,
2000.

[16] S.I.Bityukov, N.V. Krasnikov, V.A. Taperechkina, V.V. Smirnova,Statistically dual distributions in
statistical inference, in proceedings ofStatistical problems in Particle Physics, Astrophysics and
Cosmology(PhyStat’05), September 12-15, 2005, Oxford, UK, ImperialCollege Press, 2006,
pp.102-105.

[17] T. Liptak,On the combination of independent tests, Maguar Tud. Akad. Mat. Kutato Int. Kozl., 3,
171-197, 1958.

[18] K. Singh, M. Xie, W. Strawderman,Combining information from independent sources through
confidence distributions, Annals of Statistics, 33, 159-183, 2005.

12


