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1. Introduction

One of a basic problems in science is how best to consolidatteftbm several experiments
that are designed to measure the same unknown quantitye EBxeeriments may differ in time,
geographical location, and laboratory apparatus, and rnsaydiffer in underlying theory. The
following quotation seems quite relevant: "Suppose onesgxEnt sees a 3-sigma effect and
another experiment sees a 4-sigma effect. What is the cemlsignificance? Since the question
is ill-posed, the statistics literature contains many psyp@ the topic ?" [1].

Methodology for combining findings from repeated studies idi fact begin with the idea
of combining independent tests back in the 1930’s (Tipd&i81 [2]; Fisher, 1932 [3]; Pearson,
1933 [4]). There are many approaches to this subject. Manlyerh is discussed in cited above
review of R. Cousins [1].

We consider the using of one (Stouffer et al., 1949 [5]) okthenethods for combining of
significances. We show the applicability of this method ia ttase of Poisson flows of events
under study. We also discuss the approach based on confidistrigutions. This approach shows
an applicability of Stouffer's method for combining of sifioances under certain conditions.

2. Combination of tests

In this Section we follow the content and ideas presentedankgtiop on Meta Analysis [6]
(Tampere-Turku, 2006). Meta-analysis, a term coined bys&[d], is intended to provide the
statistical analysis of a large collection of analysis hssitom individual studies for the purpose
of integrating the findings.

All the methods of combining tests depend on what is knownRsalue. A key point is that
the observedP—values derived from continuous test statistics follow gami distribution under
the null hypothesi$ig regardless of the form of the test statistic, the underlyasiing problem,
and the nature of the parent population from which samplesiawn.

Quite generally, suppos¥;,...,X, is a random sample from a certain population indexed
by the paramete®, andT(Xy,...,X,) is a test statistic for testinglp : 6 = 6y againstH; : 6 >
6o, Wwhere 6y is a null value, and suppose also th# is rejected for large values of observed
T(X1,...,%). Then if the null distribution ofT (Xy,...,X,) is denoted byg(t), the (one-sided)
P—value based offi (Xy,...,Xn) is defined as

P:/ gt)dt = P[T(X,..., %) > T (X, ,%n)|Hol 2.1)
T(X1,.--,%n)

which stands for the probability of observing as extreme laevaf statisticT (Xy,...,X,) as the
observed ond (xy,...,%,) under the null hypothesis. Here, ..., X, denote the observed realiza-
tion of the Xj’s. Since the null hypothesidy is rejected for large values df(xy,...,X,), this is
equivalent to rejedty for small values of.

In most meta analysis applications, tRe-values are computed from the approximate nor-
mal distribution of the relevant test statistics. ThusT (X, ..., X,) is approximately normally
distributed with meam:(6) and variances?(6,n), theP—value is computed as
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T(X1,---,%) — U(Bo)
U(@o,n)

P=P[T(X1,...,%Xn) > T(Xg,...,X%)|Ho] = P[N(0,1) > ]. (2.2)
In general we can consid&rdifferent studies in which test problert; versusH;; are con-
sideredj = 1,...,k. A combined test procedure tests the global null hypothesis

Ho: All Hgi true iZl,...,k

versus the alternative

H;: Some of the ftrue.

There are two general properties of a combined test proeedur

e admissibility: a combined test procedure is said to be aslbiesif it provides a (not neces-
sarily the only) most powerful test against some altermatiypothesis for combining some
collection of tests;

e monotonicity: a combined test procedure is said to be mamoibthe combined test pro-
cedure rejects the null hypothedil for one set ofP—values and it must also reject the
hypothesis for any set of component-wise smaflewalues.

As shown in [8]: every monotone combined test procedurengisglble and therefor optimal
for some testing situation.
Two broad classes of combined tests based ofPthealues:

¢ uniform distribution methods, e.g. Tippett's method [2Ha#ilkinson's method [9];

e probability transformation methods, e.g. Stouffer's noeth5], Fisher's method [3], and
logit method [10].

Here we provide a comprehensive review of these so-calledlars or non-parametric statis-
tical methods'. Each of the methods described below satisfies the mondopiinciple.

Minimum P method. Tippett’s [2] minimumP test rejects the null hypothedi if any of
thek P—values is less thao*, wherea* =1— (1— or)%. In other words, we rejedi if

min(Py,...,R) = Py < a* = 1— (1— a)k. (2.3)

Wilkinson’s method. This method, due to Wilkinson [9], rejectdy if the rth smallest
P—value, Py is small, i.e., less than somefor some fixedr. Since undeHo, Py, follows a
beta distribution with the parameterandk —r + 1, it is easy to determine the cut-off poinifor
this test from the following equation:

1The problem of selecting a test fbly is complicated by the fact that there are many different vayshich the
omnibus null hypothesikly can be false.
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B H1—u)kr
Brk—r+1
whereB(.,.) is the usual beta function.

Stuffer’'s method. This method is due to Stouffer and his colleagues [5], aldeainverse
normal method. It is based on the fact that thevalue based on the—value, defined as

(2.4)

Z=0 (P (2.5)

is a standard normal variable under the null hypotheliswhere®(.) is a standard normal cu-
mulative distribution function (cdf). Thus, when tRe-valuesP;, ..., B converted to the"values
4,..., %, we have independent identically distributed (iid) staddaormal variables undét.
The combined significance test is essentially based on tlmed$uthesez=values, which has a
normal distribution under the null hypothesis with mean 6 aariancek. The test statistic

k
3 #R)
vk
is thus a standard normal variable unéigt and hence can be compared with the critical values in

the standard normal table.

Some authors (see next Section) suggest to computesttares fromP—values by using the
formula

7=

(2.6)

z=0 Y1-P). (2.7)

If this is done, the resulting value, sdy-value, i.e. significance of an enhancement, will be large
for small values oP, implying thereby thaHy is rejected whetZ is large.

Fisher's method. This method, which is is a special case of the inverse charsgtransform,
was described by Fisher [3], and is widely used in meta aisaly$is method is based on the fact
that the variable-2InP is distributed as a chi-square variable with 2 degrees efifven under the
null hypothesis whenevé? has a uniform distribution. The sum kbf these values is therefore a

chi-square variable withkdegrees of freedom undelp. The test thus rejedty when—2 ZlInP
exceeds the 10Q — a)% critical value of the chi-square distribution witk @egrees of freedom.

Logit method. George [10] proposed this method using a statistic

R kn2(5k+ 2)

Zl' 1-p 3(5k+ 4) I (2.:8)

as another combined significance technique. The arguméhatighe logit (|.e.,InﬁD is dis-

tributed as a logistic variable undelp, and further that the distribution of the sum of the logits,
suitable normalized, is close to thdistribution. There are usually two approximations of tiéd n
distribution of G which can be used. First, we can approximate the null digtdh of G with thet
distribution based o(bk+ 4) degrees of freedom. The test based on this approximatieotsé]o

if G exceeds the 10Q— a)% critical value of the distribution with(5k+ 4) degrees of freedom.



Two approaches to Combining Significances Sergey Bityukov

R

Another approximation is based on the observation thateurgl, In(1 P) could be viewed as

-

. . TP . o
approximately normal with a zero mean and varlancegafThe test based on this approximation
therefore rejectsly when

k
6= 13 It~ e

NI

(2.9)

exceeds,.

There is no general recommendation for the choice of the gwatibn method. All the com-
bination methods are optimal for some testing situationsteNcombiningP—values can lead to
incorrect conclusions because

e acceptance or rejection can depend more on the choice dfatigtis than on the data,

e the information in a highly informative experiment can beskex, and thereby largely dis-
regarded.

A P—value itself is not as informative as the estimate and stanelaor on which it is based. If
this more complete summary information about a study idaiia, it makes good sense to use it
and avoidP—values altogether. However, methods that comiBir@alues have their place when
such precise information is unavailable.

3. Zoo of significances of an enhancement

“Common practice is to express the significance of an enmaectby quoting the number of
standard deviations” [11]. Let us define a significad@cén high energy physics the significance
often is denoted aS) in accordance with Eq.2.7 [1]

Z=0"Y(1-p) =-o(p), (3.1)
where . )
1 z e 1+erf(72
q:zz—/ ez dt=—— V&' 3.2
( ) \/ZT o 2 ( )
so that
Z=2erf}(1-2p). (3.3)

For exampleZ = 5 corresponds to p—value of 287-10~’. One can see the relation between some
probability p, which estimates the uncertainty in hypotheses testing,wéth the corresponding
number of standard deviatioZsin the frame of standard normal distribution.

Z characterizes the significance of the deviation of one viabra another value (for example,
signals + background from background). The choice of significance to be used depends on the
study. There are three types of significances.

A. If sandb are expected values then we take into account both statifitictuations of signal
and of background. Before observation we can calculate amlgxpected (or an internal)
significanceZ which is a parameter of experimei@ characterizes the quality of experiment.
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B. If s+ b is observed value anldlis expected value then we take into account only the fluc-
tuations of background. In this case we can calculate annat$aignificanceZ which is
an estimator of expected significance of experinignf characterizes the quality of experi-
mental data.

C. If 8andbare observed values with known errors of measurement theamese the standard
theory of errors for estimation of the significance of enlggmnent of signal.

Different significances are used. For example, the sigmifieaZg; (Binomial) =Zr (Gamma),
Zyn (Bayes Gaussiankp, (Profile Likelihood) were studied in details in paper [12]s shown in
ref. [13] two types (case A and case B) of significances carohsidered under certain conditions
as normal random variables with variance close to 1. ThéfgigncesS,, andZy (Sp in HEP)
satisfy this property.

e S12 [14] corresponds to the case of hypotheses testing of twplsihypothesebly: 6 = b
againstH; : 8 = s+ b, whereS12 = 2(v/s+b— /b) is an expected significance (case A).

e Zy as proposed in ref. [15] is the probability from Poissonribstion with mearb to observe
equal or greater thas+ b events, converted to equivalent number of sigmas of a Gaussi
distribution. It is the case of hypotheses testing With 6 = b againstH; : 6 > b. OftenZy
is used as observed significance (case B).

Let us show the applicability of the Stouffer's method to dning of significances. We present
here only the results fd&1,. Results foiZy (Sp) [13] are analogous.

4. The Monte Carlo study of combining significances

Let us consider the distributions of possible values of ntesksignificancé.» for experiment
without signal due to fluctuation of background. Distribut of observedi,. in the case of
signal absence for 3L0° simulated experiments for several values of expettdd = 40, 50,

60, 6, correspondingly) are presented in Fig. 1 (left). Tdstst allow to say in our case that this
significance under hypothedif : s= 0 obeys the standard normal distribution in wide range of
values ofb.

We use the method which allows to connect the magnitude obltserved significance with
the confidence density (this notion is introduced in nextti§er of the parameter "the expected
significance". We carried out the uniform scanning of expesignificanceé1, varyingS:1» from
1 up to 16, using step sizedr5. By playing with the two Poisson distributions (with @areters
sandb) and using 310° trials for each value of expecte®);» we construct the conditional dis-
tributions of the probability of the production of the obsedt value of significanc& by the
experiments with expected significangg,. Integrated luminosity of each experiment is a con-
stants+ b. The parametersandb are chosen in accordance with the given expected signitcanc
S12, the realizatiorNgps (or S+i b) is a sum of realizationhls (or §) andN, (or 6).

The distributions of observed significanégz for several values of expected significar&e
(with the given integrated luminositg+ b = 70) are presented in Fig. 1 (right). The observed
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Figure 1: Distributions of observe&., in the case of signal absence for 3P simulated experiments
for several values of expectéd(left). The distributions of observed significan&e, for several values of
expected significanc&;, with the given integrated luminosisH b = 70 (right).

distributions of significances are similar to the distribns of the realizations of normal distributed
random variable with variance which close to 1.

The distribution of the observed significan@e, versus the expected significangg, shows
the result of the full scanning (Fig.2 (left)). The normastdibutions with a fixed variance are
statistically self-dual distributions [16]. It means thila¢ confidence distribution of the parameter
"expected significance&12 has the same distribution as the random variable which gemtia
realization of the observed significanga, (compare Fig. 1 (right) and Fig. 2 (right)).

The several distributions, which characterize the prdiglafter normalization) of the ex-
pected significance$;, to produce the given observed valuesSy,, are presented in Fig. 2
(right). These figures clearly show that the observed sigmifieS, is an unbiased estimator of
the expected significan®».

The observed significanc&,, (the case of the Poisson flow of events) is a realization of
the random variable which can be approximated by normatiloliston with variance close to 1
(for example, it is a standard normal distributiofi (0,1) in the case of pure background without
signal). It means that with this observed significance omeveark as with the realization of the
random variable.

Let us define the observed summary significadgg, the observed combined significance
Zcomb and the observed mean significartgean for the k partial observed significancés with
standard deviatioo (Z;) ~ 1:

k

Zsum= iz, 0%(Zsum) = Zl 0%(2), (4.1)
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Figure 2: The distributions of observed significan§a for several values of expected significar&e
with the given integrated luminosiss- b = 70 (left). The distributions of the expected significaneesich
produced the given observed significaég@. These distributions after normalization are conditiqprab-
ability distributions (confidence densities) of the expeélcsignificance&:» to produce the given observed
significance (right).

., Z
Zeomb= ————, (4.2)
02(Zsum)
. Z
Zmean: skum. (4-3)

The ratio of the sum of the several partial observed sigmiiea and the standard deviation
of this sum is the estimator of the combining significanceesksal partial observed significances.
The formula 4.2 is essentially the formula of Stouffer's huet, becauser(Z) ~ 1 and, corre-
spondingly,y/ 02(Zsum) ~ Vk.

It can also be shown by a Monte Carlo simulation. Let us geedfrse observation of the
significances for four experiments with different paramebeands simultaneously. The results of
this simulation (310° trials) for each experiment are presented in Fig. 3 (lefje @istribution of
the sums of four observed significand®g;, | = 1,4 of experiments (i.eZs.n) in each trial and
the distribution 0&ompin each trial is shown too (Fig. 3 (right)).

Note, the combination of partial significanc&s andZ, combine with third partial signifi-
cance«3 according to formula

L+2 V2, 1 L+Z+Zs
V2 V3 B V3

The problem of weights is discussed in ref. [17] in detalils.

(4.4)
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Figure 3: The results of the simulation (3 trials) of the observed significan&lz for four different
experiments (left). The distribution of th&um (right, up) and the distribution of th&.omp, (right, down)
which are produced in each of trials.

5. Combining information from independent sources throughconfidence
distributions

In this Section we follow the results presented in paper.[1BlipposeXi, Xo, ..., X, aren
independent random draws from a populatioand x the sample space corresponding to the data
setXn = (Xg,Xz,...,%n)". Let O be a parameter of interest associated WilF may contain other
nuisance parameters), and ®be the parameter space.

Definition: A function K () = Hn(Xn, (-)) on X x © — [0,1] is called aconfidence distribu-
tion (CD) for a parametef if
(i) for each givenX,, € x, Hn(+) is a continuous cumulative distribution function;

(ii) at the true parameter valué = 6y, Hn(6) = Hn(Xp, 6b), as a function of the sampke,, has
the uniform distribution U0, 1).
We call, when it exists,i8) = H,,(8) a confidenceor CD density.

Item (i) requires the functioi,(-) to be a distribution function for each given sample.

Item (i) states that the functioH,(-) brings the information onto probability scale and thus
provides confidence intervals ape-values.

The notion of a CD is attractive for the purpose of combininfgpimation. The main reasons
are that the CDs are relatively easy to construct and irdegord there is a wealth of information
on 6 inside a CD.

Let Hi(y),...,Hk(y) bek independent CDs, with the same true parameter Vju&Suppose
gc(U1,...,Uy) is any continuous function fror®, 1) to Rthat is monotonic in each coordinate. A
general way of combining, depending g¢{U1, ...,Ux) can be described as follows:
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DefineH¢(Uy,...,Ux) = G¢(ge(Uy, . .. ,Uk) ), whereG¢(-) is the continuous cumulative distribution

function ofgc(Uy,...,Ux), andUy,...,Uy are independend (0, 1) distributed random variables.
DenoteH¢(y) = Hc(Hi(y),...,Hk(y)). Itis easy to verify that;(y) is a CD function for the

paramete. Hc(y) is a combined CD.

Let Fo(+) be any continuous cumulative distribution function dgdt(-) be its inverse function. A

convenient special case of the functigyis

9e(Us,...,Ux) = Fo 1 (Ug) + ...+ Fy H(Uy).

In this caseG¢(-) = Fo*...x Fo(:), wherex stands for convolution. Just like thevalue
combination approach, this general CD combination rec@niple and easy to implement. Some
examples ofy are:

e Fp(t) = P(t) is the cumulative distribution function of the standardmal distribution. In
this case

1

W([cp‘l(Hl(y)) +. O (H(Y))).

Hm(y) = &(

This formula leads to simple Stouffer's formula for comhdre-values [5].

o Fp(t)=1— et, fort > 0, is the cumulative distribution function of the standaxg@nential
distribution (with mean 1). In this case the combined CD is

K
He1(y) = P(x5 < —221'09(1_ Hi(y))),

wherex3, is ax?-distributed random variable witrk2legrees of freedorh

o Fo(t) = %etl(tgo) +(1- %e*t)l(tzo), denoted a®E(t) from now on, is the cumulative dis-
tribution function of the standard double exponentialriistion. Herel, is the indicator
function. In this case the combined CD is

Hpbe (y) = DEx(DE ™ *(H1(y)) + ...+ DE "} (Hk(y))),

whereDE(t) = DE x...x DE(t) is a convolution ok copies ofDE(t) 3.

One can see, that this approach also leads to the formulaoff&tfor the case of combining
of normal distributed significances.

2Jt is the Fisher's omnibus method [3].
3Combining the double exponential maximizes Bahadur slope.

10
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6. Conclusion

As shown, the Stouffer's method of combining significancesks for significances which
obey the normal distribution. The significanc®s,, Zy, Zgi, andZp_ satisfy to the criterion of
normality in wide range of valuesandb in Poisson flows.

The choice of the combination method depends on many facssseems, the confidence
distributions are often convenient for combining inforinatfrom independent sources. This ap-
proach also leads to the Stouffer’'s formula in our case.

Note, any of methods for combinirfg—values, which is discussed in ref. [1], can be used for
combining significances.
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