PROCEEDINGS

OF SCIENCE

Current status of FORM parallelization

M. Tentyukov *'

Institut fir Theoretische Teilchenphysik, Universitarikauhe, Germany

J.A.M. Vermaseren
Nikhef

Science Park 105
1098 XG, Amsterdam

We report on the status of the current development in péizgteon of the symbolic manipula-
tion system FORM. There are two parallel versions availabies is based on POSIX threads
and is optimal for modern multicore computers while anothez uses MPI and can be used to
parallelize FORM on clusters and Massive Parallel Prongssystems.

Most of existing FORM programs will be able to take advantaigbe parallel execution, without
the need for modifications. In some cases some minor additi@y be needed.

More information about FORM can be found on the FORM web page

http://ww. ni khef.nl/~fornf

XII Advanced Computing and Analysis Techniques in Physsgdtch
November 3-7 2008
Erice, Italy

*Speaker.
TSupported by SFB-TR9

(© Copyright owned by the author(s) under the terms of the Cre@dmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

FORM parallelization M. Tentyukov

1. Introduction

The symbolic manipulation system FOR [1] has been available for more thgea26. It is
specialized to handle very large algebraic expressions of billions of teramsdfiicient and reliable
way. That is why it is widely used, in particular in the framework of perttiiegaQuantum Field
Theory, where sometimes hundreds of thousands of Feynman diagraerte e computed. None
of the more spectacular calculations of réfs[]2, 3], would have beesitpesvith other available
systems. However, the abilities of FORM are also quite useful in other fiéktsence where the
manipulation of huge expressions is necessary.

Some internal specific§][4] 5] allow FORM to deal with expression whichnaseh large
than the memory (RAM) available. The only restriction for the size of the egpvas is the disk
space which is rather cheap now. This means, the complexity of the probleable by FORM
is restricted practically only by the time. In this context an improvement of efitgies very
important.

Parallelization is one of the most efficient ways to increase performantie $tea to paral-
lelize FORM is quite natural.

In the late nineties a joint project was started with the University of Karlsfahadapting
FORM to run on parallel computers and clusters. This has led to the prd@gaaRORM which
uses most of the FORM sources with some extra code in addition. It hasdeseribed in the
literature [4[p] and several calculations have greatly benefited frd it [

Last few years most leading vendors switch to dual- and multicore pramseddence it was
judged important to create a version of FORM that can make efficient usecbfsystems. The
above considerations have led to the creation of TFORM [7], the multithdesgtsion of FORM.

2. General concepts

FORM provides a special programming language adapted for the manipubditiagye se-
guences of algebraic terms and the user supplies programs written in thim¢gngThe FORM
program contains several parts calfeddules The programs are executed module by module, see
e.g. [41.

Mostly FORM allows local operations on single terms, like replacing parts ahaae multi-
plying something to it; non-local operations like replacing a sum of two termsbthar term are
not allowed. We refer to this property as floeality principle all explicitalgebraic operations are
local. Non-local operations are allowed only implicitly in the sorting procediithe end of the
modules, when equivalent terms are summed up, and in some speciatcefete the contents of
brackets in the input expression.

All the existing approaches to the FORM parallelization consist of a “Masteith splits the
incoming expression into chunks and distributes these chunks among éfarkee Fig[]1. The
workers generate terms, sort them and send sorted terms back to the Miastaraster performs
final sorting [4].

This is done absolutely “transparently” for the FORM programmer, noiabefforts for par-
allel programming are required. The same FORM program runs in parallel.

FORM parallelization M. Tentyukov

Worker I

Worker | data Worker Il

data
X /

Local expr = a"24axx, +x"3—bx2 +
To Wzrker I To Wz)rrker I To next workers

Figurel: General parallelization concept

3. Modelsin use

There are two implementation of the above mentioned concept, ParFORM @M Fsee
Fig.[2. The workers are started only once at the startup.

Input for:
Worker 1 Worker 2
Master Workerl Worker2 .
P OCESS/A PROCESS1 PROCESS? Input for: Worker 1~ Worker 2
pirun —np 3 parform ... &Ster Wl Worker2
THREADO
,f = ﬁ ff READT
< \ < <
o) @) o
== e THREAD2

WORKING WORKING

WAIIING WAITING ~ WORKING ~ WORKING

el

gy

— 1]

S S]
= RESULT ~
Output of: .
\Worker 1 Worker 2 /Woortkjgr)ult o Worker 2

RESULT

Figure2: Structures of ParFORM and TFORM

ParFORM uses independent processes communicating via a messagg pagscol named
MPI! which makes it suitable to parallelize the FORM program not only on Symmetric Multi
Processor (SMP) computers but also on clusters and Massively PRraltessors

TFORM starts a pool of POSPthreads. A thread is a semi-process, that has its own stack,
and executes a given piece of code. Unlike a real process, the thweadlly shares its memory

IMore about it can be found &t t p: / / www. npi - f or um or g/
2566, €.0ht t p: // sawaal . i bi bo. conl conput er s- and- t echnol ogy/ what - massi vel y- paral | el - processi ng- npp- 516077. ht i .
3POSIX, “a Portable Operating System Interface for uniX” is the collectanme for a family of related standards.

FORM parallelization M. Tentyukov

with other threads. If the computer is an SMP computer, i.e., it has sevetht@®s, each worker
can run on its own core thus speedup the process.

BAICER N=12

Q)
2 T e
E 6
|_ 4 o _
_ & [|speedup tForm -e-
.2 = S SN SN | 2 " speedup pForm -o- |1
0 1 1 1 1 1 1 0 1 T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Number of processorsp Number of processorsp

Figure 3: Computing time and speedup for the test program BAICER orstBeAltix 3700 SMP server
with 32x Itanium2 processors (1.3 GHz).

Both models work well and give a speedup of more than 10 on a 32-cotputer, see Fid] 3.
The speedup is almost linear up to 16 CPU cores.

4. Featuresand problems

One of the main ParFORM disadvantage is its dependence on MPI. DesgiteeMB the in-
dustrial standard, various implementations are not binary compatible sOR&MEhould be com-
piled with exactly the same MPI version which is installed on the computer. InasinfFORM
requires no installation since it is just an executable file.

TFORM shares all resources of a single computer which sometimes leadotopetition
between threads. Common bottlenecks are various buses, especiallgrthside bus, and the
local disk storage. In contrast, ParFORM is able to run independec¢gses on individual nodes
which (theoretically) increases its scalability. On the other hand, shamessdspace allows
TFORM to implement some features which are hardly possible for ParFOiritielfuture we are
planning to join these concepts in order to obtain the advantages of bottnof¢he Sectiof] 5.

Both ParFORM and TFORM have efficient techniques for load balantimgMaster imme-
diately sends the next chunk to a ready worker. The smaller chunk the loettebalancing but
the worse overhead. With big chunks, it is easy to run into clusters of ‘teaohs. A “bad” term
produces a lot of new terms, many more than other terms. This means that imdtfadl ether
workers will be waiting for this worker to finish this or these term(s).

TFORM solves this problem by “stealing” the tail of the chunk which is preedsby this
“last” worker and re-distributing it among free workers. This is on byadé#f it can be switched
on or off with the statementooh Thr eadLoadBal anci ng; " and
“of f ThreadLoadBal anci ng; ”. For ParFORM such kind of load balancing is impossible.

There are some variables in FORM that are an intermediate between loggbhabtivariables,
so-called dollar-variables. Since they might be re-defined during gsotg of each term, their

FORM parallelization M. Tentyukov

value can be nondeterministic in a parallel environment. Indeed, one maokél define such a
variable and then the next one could overwrite this value before the irkewhas used it. Hence
their administration needs special attention.

By default, both ParFORM and TFORM switch into the sequential mode fdr samule
which gives dollar variables a value during execution. But there are conuases when some
dollar variables obtained from each term in each chunk natively candeessed in order to get a
minimum value, a maximum, or a sum of results. Also, sometimes at the end of thesgirgg of
a term the value of the dollar variable is not important at all. Hence new modtitmemave been
implemented to help FORM to process these variables in paratiefi mum maxi nmum sum
andl ocal . Since TFORM is able to perform centralized administration of the sharedtebje
the implementation of these options is rather efficient while ParFORM has tddastaall dollar
variables to all the workers and then collect them at the end of the module.

The next problem is Right-Hand Side (RHS) expressions, e.g.

L F=a+ b;
L G=x + F

This is not a problem for TFORM since all threads work with the same file systhile it
is a big problem for ParFORM since the expression may be situated in atstitatiout different
nodes may have independent scratch file systems. For a long time ParF&pédd évaluation of
modules with RHS expressions in sequential mode and now it is able to treairtherallel but
less efficient then TFORM.

5. Outlooks and conclusion

TFORM is optimal on a relatively small number of CPUs since it does not rstrifien a
MPI overhead and can administrate various shared objects rather éasilit is restricted to a
single SMP computer. In the future we are planning to join the ParFORM indepé-processes
concept as a “coarse-grained” structure for parallelization on a clasgkthe TFORM thread-
based approach as a “fine-grained” parallelization on multi-core clustirsy see Fig] 4.

Distributed ~ ClUSter ("Master)

memory ~.._
MPI
(Slavel | (Slavell) (Slavell) .

Shared
memory SMPMaSter

B/Vor\ke,r/ir] B/Vorkerll]

Master |

Figure4: Combination of ParFORM and TFORM

At the present moment,

FORM parallelization M. Tentyukov

Both ParFORM and TFORM are able to execute almost all FORM programsatigla

ParFORM supports more hardware architectures. TFORM suppoghghaation of more
FORM features.

ParFORM requires MPI, TFORM doesn’t, which makes it much easy to geplo

TFORM is optimal for parallelization on a smak (8) number of CPUs. ParFORM is opti-
mal for parallelization on a large=(6) number of CPUs.

In order to get benefits from a parallel version of FORM, some speafidvare is required.
ParFORM can be used on clusters with Gigabit Ethernet interconnectidridetter to have

a faster network, like InfiniBand with non-blocking topology. Both the paek&ORM versions
need a huge and fast parallel disk storage system. For example, it isowgjtefor ParFORM to
have a cluster with a Fast Ethernet NFS disk system. It is important to haeefast local disk
storages on each of the nodes (hundreds GB per CPU core).

References

[1] J. A. M. Vermaseren, arXiv:math-ph/0010025.
[2] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys6&B (2004) 101,

A.\Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Physs® (2004) 129;

J. Blumlein and J. A. M. Vermaseren, Phys. Lett6@ (2005) 130;

Y. Schroder and A. Vuorinen, JHEIB06 (2005) 051;

J. A. M. Vermaseren, A. Vogt and S. Moch, Nucl. Phys/ZBl (2005) 3;

R. Bonciani and A. Ferroglia, Phys. Rev./2 (2005) 056004;

Y. Schréder and M. Steinhauser, JHE#D1 (2006) 051;

K. G. Chetyrkin, J. H. Kuhn and C. Sturm, Nucl. Phys781 (2006) 121;

T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Nucl.Phys/4® (2006) 138.

[3] A. Retey and J.A.M. Vermaseren, Nucl. Phia€04 (2001) 281;

[4]

(5]
(6]

[7]

P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. Rev. L8&(2002) 012001,
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. L&659 (2003) 245;

P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. RB&7 (2003) 074026;

P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Eur. PhysC33 (2004) 650;

S. Bekavac, hep-ph/0505174;

P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. L8%(2005) 012003;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. L8&(2006) 012003;
P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. L&@1 (2008) 012002;
A. Kotikov, J.H. Kuhn and O. Veretin, Nucl. PhyB788 (2008) 47;

M. Tentyukovet al, “Parallel Version of the Symbolic Manipulation Program®R", in: V.G. Ganzha
et al (Eds.), Proceedings of the CASC 2004, Technische Unigngitinchen, Garching, Germany;
arXiv:cs.SC/0407066;

M. Tentyukovet al, Nucl. Instrum. Meth. A559 (2006) 2248.

M. Tentyukov, J.A.M. Vermaseren, Comput. Phys. Comnirié. (2007) 385.

D. Fliegneret al, arXiv:hep-ph/9906426;
D. Fliegneret al, arXiv:hep-ph/0007221.

M. Tentyukov and J.A.M. Vermaseren arXiv:hep-ph/07022

