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1. Introduction

The QCD phase diagram is a matter of intense investigatam froth, theory and experiment.
Some of the pressing open questions discussed at this ennéare the presence or absence of
a critical point [1], the possibility of a confined chirallyrmametric ('quarkyonic’) phase [2] and
the (non-)coincidence of the chiral and the deconfinememtsttion at zero chemical potential
[3, 4]. Answers to these questions certainly require nanpeative approaches to QCD. On the
other hand, the considerable complexity of these quessoggests that one approach alone is
hardly capable to provide all answers. Instead it seemsipnognto combine the various available
methods in order to balance their respective strengths aaftivesses.

Lattice Monte-Carlo simulations are well behaved at zeram@ginary chemical potential,
but encounter the notorious sign problem when it comes tccteanical potential. One approach
to overcome this problem, extrapolation from zero chempcaéntial by Taylor-expansion meth-
ods (see e.g. [5]), has been questioned recently on the diattie failure of corresponding ex-
trapolations in model calculations [6]. These models, nigtthe Polyakov-NJL model and the
Polyakov-quark-meson model (see e.g. [7, 8, 9] and refseitiehave been employed frequently
to explore the details of the QCD phase diagram at zero arid hemical potential. Their success
is demonstrated e.g. by the quantitative reproduction efdttice equation of state at zero chem-
ical potential. Furthermore they serve as a formidableitgiize playground to explore scenarios
for the details of the interplay between the chiral and tr@dé&nement transition. Nevertheless, it
is hard to see how the various model parameters can be daestenough to arrive at quantitative
predictions as e.g. the location of a possible critical p(if].

A third class of approaches are functional methods invgltire renormalization group equa-
tions [11] and/or Dyson-Schwinger equations [12, 13] of Q@Dthe past years much progress
has been made in extending these methods to finite tempeeaidfor chemical potential, see e.g.
[14, 12, 15, 16, 17, 18, 19, 20]. Most of the earlier works Iairgy functional methods concen-
trated on the chiral aspects of the QCD transition. Recentthods became available that also
take into account the deconfining aspect [14, 16, 18, 19,I80his talk we report on results from
one particular method that extracts the deconfinementiti@mgemperature from the properties of
the quark propagator at generalized boundary conditiohgs Method has been introduced origi-
nally within the lattice framework [21, 22] and adapted tadtional methods in [18, 19, 20]. The
guantity signaling the deconfinement transition is the duark condensate (or 'dressed Polyakov
loop’). It transforms under center transformations exalile the ordinary Polyakov loop and is
therefore an order parameter in the limit of infinitely heguarks. This quantity is furthermore in-
teresting from a formal perspective since it relates baoticthiral and the deconfinement transition
to the spectral properties of the Dirac operator [21, 23].

In the following we first recall the defining equations for tbedinary and the dual quark
condensate, then summarize the truncation scheme usedS&iicalculations before we discuss
our results for the chiral and deconfinement phase transitio
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2. The dual quark condensate

Consider the quark propagats(ip, wp) at finite temperature given by the tensor decomposition

S(B, wp) = [iya wpC (P, wp) + iy PA(R, wp) + B(P, wp)] (2.1)

with vector and scalar quark dressing functi@#\, B. At physical, antiperiodic boundary con-
ditions the corresponding Matsubara frequencies are diyemy,(n) = (21T)(n + 1/2). The
ordinary quark condensate can be extracted from the traite @fuark propagator by

(B4)o =ZnZaNeT 5 / - tro (B, @) (22)

For vanishing bare quark masses this integral is well-bedh@and delivers the chiral condensate,
whereas at finite bare quark masses it is quadratically giverand needs to be properly regular-
ized.

Consider now non-standart,(1)-valued boundary conditions in the temporal direction es-
tablished by the equatiog(X,1/T) = € @(X,0) for the quark fieldy with the boundary angle
¢ € [0,2m]. For the physical antiperiodic fermion boundary condisiame havep = 1, whereas
¢ = 0 corresponds to periodic boundary conditions. The coomdipg Matsubara frequencies are
given bywy(n, ¢) = (2rT ) (ne + ¢ /2m). In this non-standard framework one can evaluate a quark
condensate by

(B0)s ~ZNT S / 3110 S(B. @p(9)) 29

with the conventional quark condensate obtamedpfaf rmand multiplication withZ,. It has been
shown in [22] that the Fourier-transform
= [ et gy, @4
0 2m

of this ¢-dependent condensate delivers a quantity that transfandsr center transformations
exactly like the Polyakov-loop and is therefore an ordeapwater for the deconfinement transition.
This quantityZ is called the dual condensate or dressed Polyakov loop.

The relation ofZ; to the ordinary Polyakov-loop becomes transparent in thewing loop
expansion of the-dependent condensate:

gon()
({W)e = 3

& (am)ll

u(). (2.5)

Here.# denotes the set of all closed lodpwith length|l| on a lattice with lattice spacing Fur-
thermoremis the quark masgJ (1) stands for the chain of link variables in a lobmultiplied with
appropriate sign and normalization factors, see Ref. [@2HEtails. Each loop that closes around
the temporal boundary picks up factorsest® according to its winding numbex(1). Correspond-
ingly, the Fourier-transform in Eq. (2.4) projects out gkathose loops which wind once around
the temporal direction of the lattice (therefore the notak,). In the limit of heavy quark masses
long loops are suppressed bynl” and therefore only the straight line along the temporalatioe
of the lattice survives; the dual condensate is then equhktordinary Polyakov-loop.

An interesting property of the dual condensateis the fact that it can be evaluated with
functional methods [18], as we will see in the following.
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Figure 1: The Dyson-Schwinger equation for the quark propagatoled-tircles denote dressed propaga-
tors whereas the empty circle stands for the dressed quaok-gertex.

3. The Dyson-Schwinger equation for the quark propagator afinite temperature

The Dyson-Schwinger equation for the quark propagator Ed) (s displayed diagrammati-
cally in Fig. 1. At finite temperatur€ it is given by

Sp) =25 (p) ClengZ/ 3yuS(k »(k. p) Dyu(p—K), (3.1)

with p = (B, wp) andk = (k,ax) and renormalization factorg, andZ; f. HereD,, denotes the
(transverse) gluon propagator in Landau gauge lanthe quark-gluon vertex. The bare quark
propagator is given b%l(p) = iy- p+m. The Casimir factoCr = (N2 — 1)/N. stems from the
color trace; here we only consider the gauge gr8u2). The quark dressing functions B,C
can be extracted from Eq. (3.1) by suitable projections ma®space.

In order to solve this equation we have to specify expliciiressions for the gluon propagator
and the quark-gluon vertex. At finite temperatures the tesocture of the gluon propagator
contains two parts, one transversal and one longitudindigdeat bath. The propagator is then

given by @ = (0, ay))

Z1(q) Z.(9)

Duv(Q) = qz P/IV(Q) + qz va(Q) (3.2)

with transverse and longitudinal projectors
PT (@) = (& — 3% 5,5, PL. () = Puu(q) — PT 3.3
uv CI) - J qz MYV uv(q) - HV(Q) uv(Q)7 ( . )

with (i, j = 1...3). The transverse dressidg(q, «w) is also known as magnetic dressing function
of the gluon, whereas the longitudinal compongntq) is called electric dressing function of the

gluon propagator. At zero temperatures Euclid@é4)-invariance requires both dressing functions
to agree, i.eZ7(q) = Z.(q) = Z(q).

The temperature dependence of the gluon propagator cafenethfrom recent lattice calcu-
lations. The results of Ref. [24] are shown in Fig. 2. The temjure effects on both the magnetic
and electric dressing functions are such that there arestinwoeffects when comparing tfie= 0
result withT = 119 MeV. Further increasing the temperatur@ te- 298 MeV andT = 597 MeV
significantly decreases the bump in the magnetic dressimgfifin aroundp? = 1 Ge\2. There is
no indication that this decrease takes special notice oftitieal temperaturd; ~ 300 MeV for
quenched QCD with gauge gro®Y(2). The opposite seems to be true for the electric part of the
propagator. Here frofi = 119 MeV toT = 300 MeV one observes a clear increase of the bump
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Figure 2: Quenche®U(2) lattice results [24] for the transverse dressing funciip(g) and the longitudinal
dressing functioz, (q) of the gluon propagator together with the fit functions [18].

in the dressing functiod, (q) and a subsequent decrease when the temperature is fuitest t@a
T =597 MeV. Pending further investigation it seems reasonebiessume that the maximum of
the bump is reached at or around the critical temperafiure 300 MeV.

Although the lattice data still have considerable systenaators [24] they may very well cor-
rectly represent the qualitative temperature dependehite gluon propagator. We therefore use
a temperature dependent (qualitative) fit to the data ag infuthe DSE; this fit is also displayed
in Fig. 2 (straight lines). The fit functions are describedi@tail in Refs. [18, 19] and shall not be
repeated here for brevity. Note, however, that we also intieg scale determined on the lattice
using the string tensioyc = 0.44 GeV [24].

For the quark-gluon vertex with gluon momentum= (4, wy,) and the quark momenta =
(B, wp), k= (R, wx) we employ the following temperature dependent model

rv(a.k p) = Z3 (54”"4% w> y

( o, (Boa(u)ln[qz//\2+1]>26>, (3.

h+? A+ 4m

whered = —9/44 is the anomalous dimension of the vertex. The dependehite vertex on
the quark dressing functions andC is motivated by the Slavnov-Taylor identity for the vertex.
The remaining fit function is purely phenomenological, sgp 5] where an elaborate version
of such an ansatz has been used to describe meson observablegarameters are given by
d, = 7.6Ge\? andd, = 0.5Ge\”. A moderate variation of these parameters shifts the atitic
temperatures of both, the chiral and the deconfinementiti@néut leaves all qualitative aspects
of the results presented below unchanged.

The truncation scheme described above has the merit tacgyplimplement a realistic tem-
perature dependence of the gluon propagator and the quek-gertex beyond simple ansaetze,
see e.g. [14, 12, 26, 27] for previous approaches. The éxpkpressions of the resulting DSEs
for the quark dressing functions together with the detdfilswr numerical method are given in
Ref. [19].
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Figure 3: Left diagram: Temperature dependence of the dressed RoltakpZ; and the conventional
quark condensai®; = (@) y—r together with their derivatives fon=10MeV. Right diagram: The same
guantities in the chiral limit.

4. Numerical results

In Fig. 3 we display our numerical results for the ordinarg dhe dual quark condensate
together with their (normalized) temperature derivativsese evaluated for a quark massmE=
10MeV and once evaluated in the chiral limit. One clearlyssie difference in the chiral tran-
sition: whereas at finite bare quark mass we encounter acu@sthe transition changes into a
second order phase transition in the chiral limit. In thet fi@se the corresponding temperature
derivative shows a peak & = 301(2) MeV, whereas it diverges a = 298 1) MeV in the second
case. We also extracted the corresponding transition textypes from the chiral susceptibility

X = P2 (@) — (@W)r-o) @)

The results for quark mass= 10MeV are given in table 1.

The corresponding transition temperature for the decomf@me transition can be read off the
dual quark condensate (or dressed Polyakov loop). At finisglgmass and in the chiral limit we
observe a distinct rise in the dual condensate ar@usB00 MeV. The corresponding (normalized)
temperature derivative shows peak3at= 3082) MeV for quark massn= 10MeV. In the chiral
limit this peak moves tdgec = 2993) MeV.

In general we note that the chiral and deconfinement transéie close together. There are a
few MeV difference between the different transition tengperes for the crossover at finite quark
masses, whereas both transitions occur at the same teomeefatthin errors) in the chiral limit.
These findings agree with early expectations from lattioeufations [28].

To | T | Te | Toec
301(2) | 304(1) | 305(1) | 308(2)

Table 1: Transition temperatures for the chiral and deconfinemansition for quark massi= 10 MeV.
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Figure 4: Angular dependence of the quark condensate evaluated aliffigrent quark masses and in the
chiral limit at T = 400 MeV.

Furthermore we wish to emphasize that the present calonojadilthough carried out with
guenched lattice results for the gluon propagator, is ielfitsot strictly quenched: our ansatz
for the quark-gluon vertex is too simple to strictly represthe quenched theory. This can be seen
from the fact that the dressed Polyakov-loop is not strizélgo below the deconfinement transition.
Consequently we do not observe the second order deconfihgrhase transition expected from
quenchedsU(2) Yang-Mills theory. Note, however, that even if our vertexrevstrictly quenched
it is not clear whether the lattice input for the gluon progiag is precise enough to allow for an
observation of the second order phase transition.

The details of the mass dependence ofghdependent condensate are studied in Fig. 4. We
compare the angular dependence of the condensate-&00 MeV for two different quark masses
and in the chiral limit. We clearly see a broadening in therelip of the graphs with decreasing
guark mass. This can be readily understood from the looprsipa of the quark condensate,
Eqg.(2.5). At sufficiently large quark masses large loopssafgpressed by powers ofrh. As a
result only loops winding once around the torus should douiie in Eq. (2.5) and the resulting
angular behavior of the condensate should be proportionedg¢). Indeed, this is what we see:
the result for our largest quark mass can be well fitted by &wyterms in an expansioft(¢) =
zﬁzoancos(ntp) and the first term is by far the largest contribution. For senajuark masses we
observe also sizeable contributions from termgied$ with n > 1. In the plot, these contributions
are responsible for the flat area around the antiperiodindany anglep = . Approaching the
chiral limit this area becomes flatter and finally developsewvdtive discontinuity at two finite
values of¢ = m+L. These indicate the breakdown of the loop expansion Eq) {i2.the chiral
limit.

Finally we show the angular and temperature dependenceeo-tlependent condensate
0y (T) in Fig. 5. The 3d-plot clearly shows the different evolutiohthe condensate at varying
boundary conditions. Whereas at physical antiperiodicmdany anglep = mwe observe the sec-
ond order chiral phase transition also shown in Fig. 3, we dimdonotonically rising condensate
at the periodic boundary conditiogs= 0. For larger temperatures (not shown in the plot) we can
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Figure 5: A 3d-plot of the angular and temperature dependence of tinal cjuark condensate.

extract a quadratic rise of thie-dependent condensalg_o(T),
DNp—o(T) ~T? for T>Te. 4.2)

This behavior can also be extracted analytically from Eg4.)(and (2.2) for the quark propagator
and the quark condensate as shown in the appendix of Ref. Rf@jund the physical value of

¢ = mwe see a plateau withy (T) = O that gets broader with increasing temperature. The width
of this plateau seems to settle at a finite value smaller thafoR T > 2T; however from the
available results we can neither show nor exclude that itagmihes 2r very slowly forT — oo,

5. Summary

In this talk we addressed the chiral and the deconfinememsitian of quenched QCD. We
showed results for the order parameter for the chiral ttiamsithe quark condensate, and an order
parameter for the deconfinement transition, the dressedlignl loop extracted from the Landau
gauge quark propagator evaluated at a continuous rangeinfiboy conditions for the quark fields.
We found almost coinciding transition temperatures fordhieal and the deconfinement transition
at a moderate quark mass of the order of an up-quark. In tmel dimit the two transitions co-
incide within error. We find a second order chiral phase ttamsat T, 4 = 2981) MeV and a
similar temperature for the deconfinement transitijae = 2993) MeV. It is worth to emphasize
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again that both transition temperatures are extracted thenproperties of the quark propagator,
respectively the underlying properties of the Dirac opmrat

The framework used in this work is quench8d(2) Yang-Mills theory. Our transition tem-
perature may be translated into the corresponding oneseoiotpedSU(3) QCD using the relations
Tc/+/o =0.709 SU(2)) andT./+/0 = 0.646 (SU(3)) between the respective critical temperatures
and the string tension [30]. The resulting transition terapee is therl,_ 14 ~ Tgec~ 272 MeV
in the chiral limit. In order to work in the full, unquenchelaebry we would have to take into ac-
count quark-loop effects in the gluon propagator and meffents in the quark-gluon vertex [25].
These effects will shift the transition temperatures below 200 MeV, see [3, 4] for latest results
for Ny = 2+ 1 quark flavors. As concerns the dual condensate and scalssinlg function in the
unquenched formulation one needs to carefully take intowuceffects due to the Roberge-Weiss
symmetry [29]. This is because of the formal similarity of tontinuous boundary conditions for
the quark field to an imaginary chemical potential, see [20pktails.
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