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The chiral critical surface is a surface of second order phase transitions bounding the region of
first order chiral phase transitions for small quark masses in the {mu,d ,ms,µ} parameter space.
The potential critical endpoint of the QCD (T,µ)-phase diagram is widely expected to be part of
this surface. Since for µ = 0 with physical quark masses QCD is known to exhibit an analytic
crossover, this expectation requires the region of chiral transitions to expand with µ for a chiral
critical endpoint to exist. Instead, on coarse Nt = 4 lattices, we find the area of chiral transitions
to shrink with µ , which excludes a chiral critical point for QCD at moderate chemical potentials
µB < 500 MeV. First results on finer Nt = 6 lattices indicate a curvature of the critical surface
consistent with zero and unchanged conclusions. We also comment on the interplay of phase
diagrams between the N f = 2 and N f = 2+1 theories and its consequences for physical QCD.
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Figure 1: Left: Schematic phase transition behaviour of N f = 2 + 1 QCD for different choices of quark
masses (mu,d ,ms) at µ = 0. Right: Measured chiral critical line on an Nt = 4 lattice with staggered fermions
[13].

1. Introduction

The QCD phase diagram has been the subject of intense research over the last ten years.
Based on asymptotic freedom, one expects at least three different forms of nuclear matter: confined
hadronic matter (low µB,T ), quark gluon plasma (high T ) and colour-superconducting matter (high
µB, low T ). Whether and where these regions are separated by true phase transitions has to be
determined by first principle calculations and experiments. Since QCD is strongly coupled on
scales of nuclear matter, Monte Carlo simulations of lattice QCD are presently the only viable
approach.

Unfortunately, the so-called sign problem prohibits straightforward simulations at finite bary-
on density, thus our expectations for the QCD phase diagram are largely founded on model cal-
culations. Since 2001, several ways have been designed to circumvent the sign problem in an
approximate way, all of them valid for µ/T <∼1 only [1, 2]. Within this range, those methods give
quantitatively agreeing results for, e.g., the calculation of Tc(µ) [3]. Many phenomenologically
interesting quantities like screening masses, the thermodynamical pressure, quark number suscep-
tibilities etc. are thus theoretically controlled at moderate quark densities. On the other hand,
because of the intricate and costly finite size scaling analyses involved, determining the order of
the QCD phase transition, and hence the existence of a chiral critical point, is a much harder task.
Here we discuss the problem of determining the order of the finite temperature phase transition by
lattice simulations in the extended parameter space {mu,d ,ms,T,µ}.

2. The chiral critical line at µ = 0

The order of the QCD finite temperature phase transition as a function of quark masses is
depicted in Fig. 1, for µ = 0 (left). In the limits of zero and infinite quark masses (lower left and
upper right corners), order parameters corresponding to the breaking of the global chiral and centre
symmetries, respectively, can be defined, and one numerically finds first order phase transitions

2



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
2
6

Chiral critical surface of QCD Owe Philipsen

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 -0.5  0  0.5  1

First order

Crossover

V1
V2 > V1

V3 > V2 > V1
V=οο"

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.018  0.021  0.024  0.027  0.03  0.033  0.036

B
4

am

L=8
L=12
L=16
Ising

Figure 2: Left: Schematic behaviour of the Binder cumulant as a function of the N f = 3 quark mass at
finite and infinite volume. Right: Data obtained on Nt = 4 lattices with staggered fermions [13].

at small and large quark masses at some finite temperatures Tc(mu,d ,ms). On the other hand, one
observes an analytic crossover at intermediate quark masses, with second order boundary lines
separating these regions. Both lines have been shown to belong to the Z(2) universality class of
the 3d Ising model [4, 5, 6]. Since the line on the lower left marks the boundary of the quark mass
region featuring a chiral phase transition, it is referred to as chiral critical line.

However, the nature of the N f = 2 chiral transition is far from being settled. Wilson fermions
appear to see O(4) scaling [7], while staggered actions are inconsistent with O(4) and O(2) (for the
discretised theory) [8]. A recent finite size scaling analysis using staggered fermions with unprece-
dented lattice sizes was performed in [9]. Again, these data appear inconsistent with O(4)/O(2),
and the authors conclude a first order transition to be a possibility. A different conclusion was
reached in [10], in which χQCD was investigated numerically. This is a staggered action modified
by an irrelevant term such as to allow simulations in the chiral limit. The authors find their data
compatible with those of an O(2) spin model on moderate to small volumes, which would indicate
large finite volume effects in the other simulations. Finally, from universality of chiral models it is
known that the order of the chiral transition is related to the strength of the UA(1) anomaly [11].
In a model constructed to have the right symmetry with a tunable anomaly strength, it has recently
been demonstrated non-perturbatively that both scenarios are possible, with a strong anomaly re-
quired for the chiral phase transition to be second order [12]. Should the chiral transition turn out
to be first order, the likely modification of Fig. 1 (left) would be the disappearance of the tricritical
point, with the chiral critical line intersecting the N f = 2 axis at some finite mu,d and being Z(2) all
the way.

A convenient observable to locate and identify the second order boundary lines is the Binder
cumulant

B4(X)≡ 〈(X−〈X〉)4〉/〈(X−〈X〉)2〉2, X = ψ̄ψ . (2.1)

It has to be evaluated at the (pseudo-)critical coupling βc(m,µ), i.e. on the phase boundary defined
by a vanishing third moment of the fluctuation, 〈(X −〈X〉)3〉|βc = 0. In the infinite volume limit,
B4→ 1,3 for a first order transition or crossover, respectively. At the second order transition, B4→
1.604 dictated by the 3d Ising universality class to which the chiral critical line belongs. On finite
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Figure 3: Critical surface swept by the chiral critical line as µ is turned on. Depending on the curvature, a
QCD chiral critical point is present or absent. For heavy quarks the curvature has been determined [6] and
the first order region shrinks with µ .

lattices this step function gets smeared out to an analytic function, as shown in Fig. 2 (left). The
intersection points of different volumes serve as estimators of the critical value, B4(βc(mc),mc). A
scan of B4(βc(m),m) in the N f = 3 theory is shown in Fig. 2 (right). Also shown is a simultaneous
fit of all three volumes to a Taylor expansion of the cumulant around the critical point and exploiting
the theoretically known behaviour under finite size scaling,

B4(m,L) = 1.604+bL1/ν(m−mc)+ . . . (2.2)

Such a fit allows to check whether the chosen volumes are large enough to be consistent with finite
size scaling, as well as extracting the universality class from the values of B4 at the intersection
point and the scaling exponent, ν = 0.63 in the case of 3d Ising.

Following this recipe by fixing ms and then scanning in mu,d , the chiral critical line has recently
been mapped out on Nt = 4 lattices [13], Fig. 1 (right). In agreement with expectations, the critical
line steepens when approaching the chiral limit. Assuming the N f = 2 chiral transition to be in the
O(4) universality class implies a tricritical point on the ms-axis, Fig. 1 (left). The data are consistent
with tricritical scaling [14] of the critical line with mu,d and we estimate mtric

s ∼ 2.8Tc. However,
this value is extremely cut-off sensitive and likely smaller in the continuum, cf. Sec.4.

3. The chiral critical surface

When a chemical potential is switched on, the chiral critical line sweeps out a surface, as shown
in Fig. 3. According to standard expectations in the literature [14], for small mu,d , the critical line
should continuously shift with µ to larger quark masses until it passes through the physical point
at µE , corresponding to the endpoint in the QCD (T,µ) phase diagram. This is depicted in Fig. 3
(left), where the critical point is part of the chiral critical surface. However, it is also possible for
the chiral critical surface to bend towards smaller quark masses, Fig. 3 (right), in which case there
would be no chiral critical point or phase transition at moderate densities. For definiteness, let us
consider three degenerate quarks, represented by the diagonal in the quark mass plane. The critical
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Figure 4: µ2-dependence of the Binder cumulant on the chiral critical line for N f = 3 (left) [15] and N f =
2+1 with physical strange quark mass (right), both for Nt = 4.

quark mass corresponding to the boundary point has an expansion

mc(µ)
mc(0)

= 1+ ∑
k=1

ck

(
µ

πT

)2k
. (3.1)

A strategy to learn about the chiral critical surface is now to tune the quark mass to mc(0) and
evaluate the leading coefficients of this expansion. In particular, the sign of c1 will tell us which of
the scenarios in Fig. 1 is realised.

The curvature of the critical surface in lattice units is directly related to the behaviour of the
Binder cumulant via the chain rule,

damc

d(aµ)2 =− ∂B4

∂ (aµ)2

(
∂B4

∂am

)−1

. (3.2)

While the second factor is sizeable and easy to evaluate, the µ-dependence of the cumulant is
excessively weak and requires enormous statistics to extract. In order to guard against systematic
errors, this derivative has been evaluated in two independent ways. One is to fit the corresponding
Taylor series of B4 in powers of µ/T to data generated at imaginary chemical potential [13, 15], the
other to compute the derivative directly and without fitting via the finite difference quotient [15],

∂B4

∂ (aµ)2 = lim
(aµ)2→0

B4(aµ)−B4(0)
(aµ)2 . (3.3)

Because the required shift in the couplings is very small, it is adequate and safe to use the original
Monte Carlo ensemble for amc(0),µ = 0 and reweight the results by the standard Ferrenberg-
Swendsen method. Moreover, by reweighting to imaginary µ the reweighting factors remain real
positive and close to 1.

The results of these two procedures based on 20 and 5 million trajectories on 83× 4, respec-
tively, are shown in Fig. 4 (left). The error band represents the first coefficient from fits to imaginary
µ data, while the data points represent the finite difference quotient extrapolated to zero. Both re-
sults are consistent, and the slope permits and extraction of the subleading µ4 coefficient, while
the combination of all data also constrains the sign of the µ6 term. After continuum conversion
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Figure 5: Left: The chiral critical line moves to smaller quark masses with decreasing lattice spacing.
Right: µ2-dependence of the Binder cumulant on the chiral critical line for N f = 3,Nt = 6

the result for N f = 3 is c1 =−3.3(3),c2 =−47(20),c3 < 0 [15]. The same behaviour is found for
non-degenerate quark masses. Tuning the strange quark mass to its physical value, we calculated
mu,d

c (µ) with c1 = −39(8) and c2 < 0, Fig. 4 (right). Hence, on coarse Nt = 4 lattices, the region
of chiral phase transitions shrinks as a real chemical potential is turned on, and there is no chiral
critical point for µB <∼500 MeV. Note that one also observes a weakening of the phase transition
with µ in the heavy quark case [6], in recent model studies of the light quark regime [18, 19], as
well as a weakening of the transition with isospin chemical potential [20].

4. First steps towards the continuum, Nt = 6

The largest uncertainty in these calculations by far is due to the coarse lattice spacing a∼ 0.3
fm on Nt = 4 lattices. First steps towards the continuum are currently being taken on Nt = 6,a∼ 0.2
fm. At µ = 0, the chiral critical line is found to recede strongly with decreasing lattice spacing
[16, 17]: for N f = 3, on the critical point mπ(Nt = 4)/mπ(Nt = 6) ∼ 1.8. Thus, in the continuum
the gap between the physical point and the chiral critical line is much wider than on coarse lattices,
as indicated in Fig. 5 (left). Preliminary results for the curvature of the critical surface, Fig. 5
(right), result in c1 = 7(14),−17(18) for a LO,NLO extrapolation in µ2, respectively. Thus the
sign of the curvature is not yet constrained. But even if positive, its absolute size appears too small
to make up for the shift of the chiral critical line towards smaller quark masses, and one would
again conclude for absence of a chiral critical point below µB <∼500 MeV in this approximation.
Higher order terms with large coefficients would be needed to change this picture.

Note that on current lattices cut-off effects appear to be larger than finite density effects, hence
definite conclusions for continuum physics cannot yet be drawn. A general finding is the steepness
of the critical surface, making the location of a possible critical endpoint extremely quark mass
sensitive, and hence difficult to determine accurately.

5. The interplay between N f = 2,3 and N f = 2+1

Let us finally comment on the importance of understanding both the N f = 2,3 as well as their
connection before concluding anything for physical QCD. Fig. 6 (left) shows the scenario that
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Figure 6: Two possible scenarios for connected and disconnected triple lines in the mu,d = 0-plane.

is used in the literature when the argument for the expected QCD phase diagram with a critical
endpoint is made [14]. The tricritical point at µ = 0, which we have discussed here, is expected to
be analytically connected by a tricritical line, upon varying ms, to the tricritical point at some finite
µ in the two-flavour case. This picture arises plausibly if the chiral critical surface behaves as in
Fig. 3 (left). However if, as on our coarse lattices, Fig. 3 (right) is realised, the situation might well
be as in Fig. 6 (right). Even if the chiral N f = 2 theory does feature a tricritical point at finite µ ,
it need not be connected to the chiral critical surface, and nothing follows for the physical point
without additional information.

Furthermore, the shrinking of the critical quark masses with diminishing lattice spacing makes
it likely that a potential tricritical point, Fig. 1, also moves from a large value for the strange quark
mass, mu,d = 0,mtric

s ∼ 2.8T on Nt = 4 [13], towards smaller values in the continuum limit. In
particular, it is possible to have a situation for which mu,d = 0,mtric

s < mphys
s . In this case the chiral

critical surface we have been discussing here would not be responsible for a possible critical point,
regardless of its curvature, but another surface emanating from the O(4)-chiral limit. Again, both
of these scenarios depend on conclusively understanding the situation in the N f = 2 chiral limit.

6. Conclusions

The determination of the order of the QCD finite temperature phase transition as a func-
tion of quark chemical potential is a maximally difficult problem. Besides the sign-problem, the
strong quark mass and flavour dependence are responsible for potentially rich structures in the
{mu,d ,s ,T,µ} parameter space which are compute-expensive to disentangle due to the required in-
tricate finite size scaling analyses in the light quark mass regime. The existing results show that we
need to control various limiting cases of QCD as well as their connection to N f = 2 + 1 in order
to understand if there is a critical point in the QCD phase diagram, and to which critical surface it
belongs.
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