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1. Introduction

Imaging the Milky Way, an observer in another galaxy would probably note a spiral structure
dotted with many bright HII regions. Presently it is believed that the Milky Way is a spiral galaxy,
and a best “educated guess” is that it is a barred Sb to Sc galaxy (Blitz, Fich & Kulkarni 1983;
Gerhard 2002). Since we are inside the Milky Way, the task of properly characterizing its structure
has proved very difficult (Bash 1981).

Originally, HI emission was used to map the structure of the Milky Way (Oort, Kerr & West-
erhout 1958). Longitude-velocity plots of HI emission clearly demonstrated that there were some
coherent, large-scale structures, which were interpreted in terms of spiral arms in the Milky Way.
However, the difficulty of determining accurate distances to HI clouds made the task of turning
longitude-velocity data into a true plan-view of the Milky Way very uncertain (Burton 1988).
Later, millimeter-wave observations of molecules, such as CO, also evidenced coherent, large-
scale structures with higher contrast than seen in HI (Dame, T. M., Hartmann, D. &Thaddeus, P.
2001). But, again, the uncertainty of distances to molecular clouds was the main obstacle to map
the Milky Way with sufficient accuracy to reveal its spiral structure.

Georgelin & Georgelin (1976), hereafter GG76, combined optical observations of young stars
and radio data of HI cloud and HII region emissions, to produce a “plan-view” model of the spi-
ral structure of the Milky Way. Luminosity distances to nearby stars were used where available
and kinematic distances elsewhere, mostly for more distant HII regions. While subject to very
significant uncertainties from kinematic distances, the GG76 model has remained the basis for the
“standard” model of the spiral structure of the Milky Way for nearly 30 years. More recently,
Taylor & Cordes (1993) have modeled pulsar dispersion measures to refine the GG76 model (see
Fig. 1).

2. Maser Trigonometric Parallaxes

Methanol (CH3OH) and water (H2O) masers are excellent astrometric targets for parallax mea-
surements. Both maser types are widespread and associated with newly formed stars in regions of
high-mass star formation. The class II CH3OH masers (e.g. 6.7 and 12 GHz transitions) generally
are compact (∼ 1 mas), slow moving, and vary slowly, which minimizes the possibility of bright-
ness variations mimicing position shifts. H2O masers are also compact and strong, and the high
frequency of the transition minimizes ionospheric fluctuations and interstellar scattering problems.
However, H2O masers can be highly variable on time scales as short as weeks to months and, since
parallax observations are best made over a timespan of 1 yr, this can be problematic.

VLBI (Very Long Baseline Interferometry) observations can presently achieve the accuracy to
measure the trigonometric parallax of masers through the whole galactic disk. Notably, the NRAO
1 Very Long Baseline Array (VLBA) and the Japanese project VLBI Exploration of Radio Astrom-
etry (VERA) (Kobayashi et al. 2005) have already demonstrated the ability of measuring relative
positions with an accuracy of ∼10µas (Reid et al. 2008; Honma et al. 2007), which allows one
to measure parallaxes to distances up to 10 kpc. A noteable result that demonstates the reliability

1The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under coop-
erative agreement by Associated Universities, Inc.
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Figure 1: “Plan-view" model of the spiral structure of the Milky Way after Georgelin & Georgelin (1976)
and Taylor & Cordes (1993). The main spiral arms are labeled. The red and purple dot indicate the position
of the Galactic Center and the Sun, respectively.

of maser trigonometric parallaxes is the distance to the UCHII region W3OH in the Perseus Arm,
which has been indipendently measured using both methanol (1.95±0.04 kpc; Xu et al. (2006))
and water (2.04±0.07 kpc; Hachisuka et al. (2006)) masers, finding a very good agreement.

In addition to distances, the observations used to determine trigonometric parallaxes also
yield excellent measurements of secular proper motions, with accuracies of ≈ 1 km s−1 (Xu et
al. 2006). Combining radial velocity measurements with proper motions (and distances) yields
full 3-dimensional velocities, relative to the motion of the Sun. Thus, maser VLBI observations
can ultimately provide the full kinematics of massive star forming regions in the Milky Way, which
will accurately define the rotation curve of the Milky Way and, in turn, its enclosed mass as a
function of Galactocentric radius.

3. Results

Tables 1 and 2 list the sources whose parallax and proper motion have been so far measured
by VLBA and VERA , respectively. The derived source distances are generally accurate to 5–10%,
and for three VLBA measurements (Orion, W3OH and S252) the accuracy is a few per cent. The
accuracy in the proper motions generally correspond to uncertainties in maser spot velocities of a
few kilometers per second. VLBA parallaxes listed in Table 1 have been determined by observing
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Table 1: VLBA parallax and proper motion measurements

Source Parallax µx µy References
(mas) (mas y−1) (mas y−1)

Orion 2.425±0.035 3.3±1.0 0.1±1.0 (Menten et al. 2007)
Cep A 1.43±0.080 0.5±1.1 −3.7±0.2 (Moscadelli et al. 2008)

G 232.6+1.0 0.596±0.035 −2.17±0.06 2.09±0.46 (Reid et al. 2008)
W3OH 0.512±0.010 −1.20±0.2 −0.15±0.2 (Xu et al. 2006)
S 252 0.476±0.006 0.02±0.01 −2.02±0.04 (Reid et al. 2008)

G 35.20-0.7 0.456±0.045 −0.18±0.06 −3.63±0.11 (Zhang et al. 2008)
G 59.7+0.1 0.463±0.020 −1.65±0.03 −5.12±0.08 (Xu et al. 2008)
NGC 7538 0.378±0.017 −2.45±0.03 −2.44±0.06 (Moscadelli et al. 2008)
G 35.20-1.7 0.306±0.045 −0.71±0.05 −3.61±0.17 (Zhang et al. 2008)
G 23.01-0.41 0.218±0.017 −1.72±0.04 −4.12±0.3 (Brunthaler et al. 2008)
W 51 IRS2 0.195±0.071 −2.49±0.08 −5.51±0.11 (Xu et al. 2008)

G 23.44-0.18 0.170±0.032 −1.93±0.1 −4.11±0.07 (Brunthaler et al. 2008)

Note.– Col. 1 gives the source name. Col. 2 the derived parallax. Cols. 3 and 4 the measured proper motion towards

the East and North direction, respectively. Cols. 5 reports the bibliographic reference.

strong 12 GHz CH3OH masers associated with massive star-forming regions, with the exception of
Orion toward which compact, non-thermal continuum sources were observed. The VERA results
listed in Table 2 have been obtained by monitoring strong 22 GHz H2O masers.

Figure 2 illustrates the parallax fit for the source S 252 (Reid et al. 2008). Data presented
are for two distinct maser spots whose motion across the sky is determined relative to the three
background quasars: J0603+2159, J0607+2218 and J0608+2229. VLBA observed the 12 GHz
CH3OH masers in S 252 at five epochs across one year, optimized to minimize correlation between
parallax and proper motions. The global motion of a given maser spot can be modeled in terms of a
linear motion (which derives from the sum of the apparent (solar + galactic) and peculiar motions)
combined with a sinuisodal motion reflecting the earth revolution (i.e. the parallax signature).

4. Discussion

Combining the distances, LSR velocities and proper motions of the masers yields their loca-
tions in the Galaxy and their full space motions. Since internal motions of 12 GHz methanol masers
are fairly small, typically ∼ 3 km s−1(Moscadelli et al. 2002), the maser motions should be close
to that of their associated young stars. Given a model for the scale and rotation of the Milky Way,
we can subtract the effects of Galactic rotation and the peculiar motion of the Sun from the space
motions of the maser sources and estimate the peculiar motions of the maser star forming regions.
We adopt the IAU values for the distance to the Galactic center (R0 = 8.5 kpc) and the rotation
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Table 2: VERA parallax and proper motion measurements

Source Parallax µx µy References
(mas) (mas y−1) (mas y−1)

ρ Oph 5.6±1.0 −20.6±0.7 −32.4±2 (Imai et al. 2007)
NGC 1333 4.25±0.32 17.9±0.9 −7.9±1.4 (Hirota et al. 2008)

S Crt 2.33±0.13 −1.56±0.22 −5.16±0.22 (Nakagawa et al. 2008)
Orion-KL 2.29±0.1 2.77±0.09 −8.97±0.21 (Hirota et al. 2007)
VY CMa 0.88±0.08 −2.09±0.16 1.02±0.61 (Choi et al. 2008)
NGC 281 0.355±0.030 −2.63±0.05 −1.86±0.08 (Sato et al. 2007)

S 269 0.189±0.010 −0.422±0.010 −0.121±0.042 (Honma et al. 2007)

Note.– Col. 1 gives the source name. Col. 2 the derived parallax. Cols. 3 and 4 the measured proper motion towards

the East and North direction, respectively. Cols. 5 reports the bibliographic reference.

speed of the Galaxy at this distance (Θ0 = 220 km s−1) and the Hipparcos measurements of the
Solar Motion (Dehnen & Binney 1998).

Fig. 3 shows the “plan-view" model of the spiral structure of the Milky Way (Georgelin &
Georgelin 1976; Taylor & Cordes 1993) with overlaid positions and peculiar motions of the
sources observed with VLBA (see Table 1) and the two most distant sources (S 269 and NGC 281)
observed with VERA (see Table 2). Fig. 3 shows also the source WB89-437, for which a very
accurate distance of 6.10±0.2 kpc has been recently measured by Hachisuka et al. (2008), mon-
itoring with the VLBA the associated 22 GHz H2O masers. The derived parallaxes allow us to
confidently locate portions of the Perseus Arm (W3OH, NGC 7538 and S 252), the Local Spur
(G 232.6+1.0, Orion, Cep A), the Carina-Sagittarius Arm (G 35.20-1.7, W 51 IRS2) and possibly
the Crux-Scutum Arm (G 23.01-0.41). Comparison of trigonometric and kinematic distances in-
dicate that in most cases kinematic distances are in excess, and this is particularly the case for the
Perseus Arm sources affected by strong kinematic anomalies.

For most sources, the largest component of the derived peculiar motion is directed counter to
Galactic rotation, that is these sources appear to rotate slower than the Galaxy spins (i.e. slower
than circular rotation). The implications of these peculiar velocities for models of Galactic rotation
and structure will be discussed in Reid et al. (in preparation).

The two most distant sources, S 269 and WB89-437, have a similar Galactocentric distance
(13.5 kpc), and their positions support the presence of an Outer Arm extending from the 2nd (l =

135o) to the 3rd (l = 196o) Galactic quadrant. Looking at Fig. 3 one notes that in the direction
of Galactic rotation the peculiar motion of both S 269 and WB89-437 is about zero. Since the
peculiar motions in Fig. 3 are derived assuming a flat Galactic rotation curve, that indicates that
at the Galactocentric radii of S 269 and WB89-437 (13.5 kpc) the Galactic disk rotates at the
same speed as at the Sun Galactocentric radius. This finding is a strong argument in favour of the
presence of a large amount of dark matter in the outer region of the Galaxy, as discussed by Honma
et al. (2007).
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Figure 2: Parallax and proper motion data and fits for the source S 252. Plotted are position measurements
of two maser spots (open and solid symbols) relative to the three background sources: J0603+2159 (red
triangles), J0607+2218 (green squares) and J0608+2229 (blue hexagons). Left Panel: Positions on the sky
with first and last epochs labeled. Data for the two maser spots are offset horizontally for clarity. The
expected positions from the parallax and proper motion fit are indicated (crosses). Middle Panel: East (solid
lines) and North (dashed lines) position offsets and best fit parallax and proper motions fits versus time. Data
for the two maser spots are offset vertical, the northward data have been offset from the eastward data, and
small time shifts have been added to the data for clarity Right Panel: Same as the middle panel, except the
with the best fit proper motions have been removed, allowing all data to be overlaid and the effects of only
the parallax seen.

5. Future Plans

VERA plans to observe 70-80 maser sources every year, and in the next 12-15 years VERA
will observe ≈1000 maser sources to precisely locate them in the Galactic disk (Honma et al. 2008).

During 2008-2009, VLBA will observe another eight 12 GHz maser sources selected such a
way to better locate the Carina-Sagittarius Arm and the Crux-Scutum Arm. Additionally, VLBA
will observe eight 22 GHz water masers. Based on their kinematic distances, four of them are in
the Outer Galaxy and the measurement of their distances and proper motions will constrain the
rotation speed of the Milky Way at Galactocentric radii between 17 and 22 kpc. The remaining
four water masers are in the Perseus Arm in the 1st quadrant of the Milky Way, and will allow one
to trace distant portions of this spiral arm.

Finally, it is worthwhile mentioning that the European VLBI Network is also measuring
trigonometric parallaxes using 6.7 GHz CH3OH masers (Rygl et al. (these proceedings)).
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Figure 3: “Plain-view" model of the spiral structure of the Milky Way (Georgelin & Georgelin 1976;
Taylor & Cordes 1993) with overlaid positions and peculiar motions of the sources observed with VLBA
(light blue dots) (see Table 1) and the two most distant sources (S 269 and NGC 281) observed with VERA
(green dots) (see Table 2). The source WB89-437 (blue dot), whose parallax and proper motion has been
recently measured by Hachisuka et al. (2008) using VLBA observations of 22 GHz H2O masers, is also
reported. The main spiral arms are labeled. The red and purple dot indicate the position of the Galactic
Center and the Sun, respectively. Peculiar motions are calculated using a flat galactic rotation model with
the IAU values of galactic constants (R0 = 8.5 kpc, Θ0 = 220 km s−1) and the Sun peculiar motion from
Hipparcos data. The amplitude scale for the peculiar motions is given in the left bottom of the figure.
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