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We describe the statistical procedures for combination of results from independent searches for 
the charged Higgs boson. The methods are applied to Monte Carlo studies of five search 
channels currently considered at the ATLAS experiment. The statistical treatment is based on a 
frequentist approach, where effects of systematic uncertainties are incorporated by use of the 
profile likelihood ratio. Results are presented for the expected statistical significance of 
discovery and expected exclusion limits. 
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1.Introduction 

Charged Higgs searches will exploit a number of statistically independent channels. One 
wishes to combine all of the information from them to provide a single measure of the 
significance of a discovery or limits on charged Higgs production. In this note we describe the 
statistical methods used for the combination of the five search channels currently studied with 
ATLAS simulation [1].The approach taken here is frequentist based, where effects of systematic 
and statistical uncertainties are incorporated by use of the profile likelihood ratio [2].  

The use of the likelihood ratio as a test statistics that summarizes the data is fairly 
common, see for example [3]. In particular, the sampling distribution of the likelihood ratio is 
known in the large sample limit [4]. This allows for a fast evaluation of discovery and exclusion 
limit over a wide range of signal parameters, which is needed if one wants to establish 
sensitivity regions within theoretical models such as the MSSM. 

The profile likelihood method is described in section  2. In section  3 we describe the 
specific statistical model used for the charged Higgs combination, and in section  4 we show the 
results of the combination and their interpretation within MSSM scenarios.  

 

2.The Profile Likelihood method 

The profile likelihood method uses a likelihood ratio to distinguish between two 

hypothses, the background-only hypothesis (0H ) and the signal+background hypothesis (1H ). 

We introduce a signal normalization parameter µ , such that the expected number of events in a 

given channel  (or equivalently in a single bin of a histogram)  is given by: 

 [ ]i i iE n s bµ≡ +  (1) 

i.e., 1µ = ( 0 ) corresponds to the 1H ( 0H ) hypothesis. The expected numbers of signal and 

background events, is  and ib , may not be known precisely a-priori, but rather estimated with 

some theoretical and experimental uncertainties. In such case they are called nuisance 

parameters. More generally, we can have a set of nuisance parameters θθθθ  related to the 

expected signal and background rates (such as luminosity, variuos experimental efficiencies 

etc.). We then define a likelihood function that describes the probability of observing in  events 

for a given values of the nuisance parameters: 

 ( | , )iL n µ θθθθ  (2) 

The profile likelihood ratio, ( )λ µ , is defined as: 
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where µ̂ ,θ̂θθθ  are the maximum likelihood estimators (MLE) of µ ,θθθθ  respectively, and 
ˆ̂
θθθθ  is the 

conditional  MLE of θθθθ  for a fixed value of µ . The likelihood ratio is defined such that 

0 ( ) 1λ µ≤ ≤ . Wilks’ theorem [4]  states that the sampling distribution of  2log ( )λ µ−  

approaches a 2χ distribution with one degree of freedom, when the data in  is consistent with 

µ . For example, this is true for 2log ( 0)λ µ− =  when the data is consistent with the 

background-only hypothesis, and for 2log ( 1)λ µ− =  when the data is consistent with the 

signal+background  hypothesis. 

2.1 Statistical significance of a discovery 

The statistical significance of observing a signal is usually defined in terms of the rate of  
‘Type-I errors’. That is, the probablity (‘p-value’) that a background fluctuation will fake a 
signal. In terms of the profile likelihood ratio (3), this can be expressed as the probabilty of 

2log ( 0)λ µ− = being larger then it’s observed value, under the background-only hypothesis. 

This is schematically illustrated in Figure 1.  
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Figure 1 Illustration of the relation between the observed value of 2log ( 0)λ µ− =  and the p-value. 

The shaded area represents the probablity that a background fluctuation will give rise to value of 
2logλ−  that is equal to or larger then the one actually observed.   

Using the properties of the 2χ  distribution, one can express the associated p-value in a 

more common form as a number of standard deviations, using the relation: 

 2log ( 0)discoveryZ λ µ= − =  (4) 

2.2 Exclusion limits 

The statistical significance of excluding a signal can be similarly derived from the 
expected distribution of the profile likelihood ratio. In this case the situation is reversed and one 
is interested in the probability of rejecting the signal+background hypothesis when it is actually 
true. The significance in terms of standerd deviations is similarly given by: 
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 2log ( 1)exclusionZ λ µ= − =  (5) 

 

2.3 Combined significance 

In the case of several independent search channels, the method described above is 
generalized in a straight forward manner. The full likelihood function is simply given by the 
product of the individual ones: 

 ( | ) ( | , )i i i
i

L n L nµ µ=∏ θθθθ  (6) 

In principle some of nuisance parameters iθθθθ  may be common to several channels, however we 

keep the general notation for simplicity. The construction of the profile likelihood ratio (3) now 
requires a simultaneous maximization of the likelihood function with respect to all of the 

nuisance parameters as well as the signal strength parameter µ .  

The situation is simplified when one wishes to estimate expected sensitivity based on a 

Monte Carlo simulation. In this case one uses i i in s b= +  as the ‘observed’ number of events in 

a given channel (under the signal+background hypothesis). That is, the observed numbers are 
assumed to be equal to their expected values1. This is sometimes refferd to as the ‘Asimov’ 

dataset 2. This lead to ̂µ  being exactly equal to one both for the global likelihood function and 

each of the individual ones, ˆ ˆ 1iµ µ= = , such that the profile likelihood ratio can be written as 

 
ˆ ˆˆ ˆ( | , ) ( | , )

2 log ( 0) log log
ˆ ˆˆ ˆ( | , ( | ,

i i i i

i ii i i i i

L n L n

L n L n
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λ µ

µ µ
− = = =∑ ∑

θ θθ θθ θθ θ

θ ) θ )θ ) θ )θ ) θ )θ ) θ )
 (7) 

The combined significance is therefore simply given by the sum of each individual channel’s 
significance, taken in quadrature: 

 2 2 2
1 2 ...discovery nZ Z Z Z= + + +  (8) 

where iZ  denotes the individual discovery significance of  channel i . Similar relation holds for 

the combined significance of exclusion. 
 

3.The statistical model 

For the combination of the charged Higgs channels, a simple statistical model of the data 
is used in which the background uncertainty is taken to be 10% for all channels3. The model 

                                                 
1  In principle, one can generate a set of random numbers distributed around the expected values with Poisson 

probabilities, so as to mimic a realistic dataset. In that case the resulting significance can be viewed as a random 
variable who’s expected value is given by the ‘Asimov’ dataset. 

2 Inspired by the short story Franchise by Isaac Asimov, in which elections are held by selecting a single voter to 
represent the entire electorate. 

3 This value is estimated to be the uncertainty on background rates when they are evaluated from data, using 
specialized methods [5]. 
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also takes into account the statistical uncertainties related to the limited sample size of the 
Monte Carlo simulation used to evaluate the backgrounds.  

Consider a channel in which the number of background events estimated by Monte Carlo 

is MCb , for some integrated luminosity MC
L . We then define the following likelihood function 

of the number of observed events n , at an arbitrary luminosity L  where / MCτ ≡ L L   

 0 0( | ) ( | ) ( | ) ( | , )MC MC MC
bL n Poiss n s b Poiss b b Gamma b bµ µ τ σ= +  (9) 

Here 0
MCb  is the expected number of Monte Carlo events, which is associated with a systematic 

uncertainty bσ . b  is the true number of expected events at an integrated luminosity MC
L . The 

choice of a Gamma distribution for representing the systematic uncertainty is of course 
somewhat arbitrary, since a systematic uncertainty by nature cannot be associated with a 
distribution in the usual probabilistic sense.  

The likelihood function (9) does not include any uncertainties related to the number of 
signal events s . For discovery significance such uncertainties are not relevant since the profile 

likelihood ratio is evaluated at 0µ = , however they are important for exclusion4. In that case 

similar factors are added to (9) with respect to s . 

Finally, a slight complication is caused by the fact that some of the backgrounds used for 
the analysis are estimated by event generators that produce events with positive and negative 
weights. These need to be considered separately since they both contribute to the statistical 
uncertainty related to the total number of backgrounds events. The likelihood function (9) is 
modified in this case to:  

0 0 0 0( | ) ( | ) ( | ) ( | ) ( | , )MC pos MC neg pos neg
pos neg bL n Poiss n s b Poiss b b Poiss b b Gamma b b bµ µ τ σ= + −  (10) 

where MC
posb , MC

negb  are the numbers of positive and negative Monte Carlo events, and 0
posb , 0

negb  

are their expected values, respectively. 

4.Results 

The expected significance for both discovery and exclusion are evaluated as a function of 
the charged Higgs production cross section. In Figure 2 the contours corresponding to a 

discovery significance of 5σ  and exclusion at a 95% confidence level are shown in the 

( , tan )
H

m β+  plane within the MSSM maxhm − scenario, for an integrated luminosities of 1, 

10 and 30 fb-1 . 

For the analyses considering a light charged Higgs ( )topH
m m+ <  the Monte Carlo 

background sample size was approximately equivalent to 1 fb-1 of data. The expected number of 
background events at a luminosity of 30 fb-1 is therefore associated with a large statistical 
uncertainty, which effectively does not allow extending the discovery sensitivity reach. This 
effect is clearly seen in Figure 2. In order to assess how the situation might be improved with a 

                                                 
4 This is easily understood: a discovery can be made if a significant excess of events above the background is 

observed, even if one does not know in advance what the signal rate is. On the other hand, a signal cannot be 
excluded if It’s value is not known. 



P
o
S
(
C
H
A
R
G
E
D
2
0
0
8
)
0
3
8

Statistical combination Ofer Vitells 

 
     6 

 
 

larger sample size, we show in Figure 3 the same contours in the case that the background 
estimates are assumed to be based on an infinitely large Monte Carlo sample. It should be clear 
however that precise determination of the expected sensitivity at luminosities higher then 1 fb-1 
would only be possible if a sufficient amount of simulated events is available.  
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Figure 2. combined discovery(right)  and exclusion(left)  contours in the MSSM mh-max scenario, for an 
integrated luminosities of 1,10 and 30 fb-1. 
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Figure 3. combined discovery(right)  and exclusion(left)  contours when statistical uncertainties related 
to the Monte Carlo sample size are ignored.  

Conclusions 

The procedure for combination of search results based on the profile likelihood ratio has 
been applied to a study of the search for the charged Higgs boson. The profile likelihood 
method allows one to construct a test statistic that naturally takes into account systematic 
uncertainties as well as Monte Carlo statistics used to estimate backgrounds. The asymptotic 
approximation of the sampling distribution of the likelihood ratio allows for a fast evaluation of 
discovery and exclusion sensitivities in various theoretical scenarios. 

The expected discovery sensitivity with a 5σ  significance as well as the exclusion 

sensitivity at 95% confidence level have been obtained as a function of the charged Higgs mass 
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and tanβ for the mh-max scenario within the MSSM. For current analyses, sensitivity estimates 

at high luminosities are limited by available Monte Carlo statistics.  
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