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In the future neutrino experiments, a beta-beam, which can produce pure electron neutrino beam,

is expected to achive precise measurement of the neutrino oscillation parameters. In theνµ ap-

pearance measurement of a beta-beam, a detector does not need to identify particle charge and

thus, a water Cherecov detector will be a candidate for the far detector. In this paper, we study the

expected signal detection efficiencies and background at the proposed beta beam facilities with

the water Cherenkov detector. In the estimation, we use the current simulation and analysis tools

developed for the Super-Kamiokande experiment. Dependingon the beta beam setups, the signal

detection efficiencies are found to vary from 36.4% to 75.3% in the standardνµ search. The ma-

jor source of background was found to be neutral current pionproduction, and the fraction of the

background increases with the mean energy of the neutrino beam.
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1. Introduction

Various neutrino experiments are in operation or in preparation to measure neutrino oscillation
parameters precisely. These experiments are expected to provide the mass squared differences or
oscillation angles. However, the mass hierarchy of neutrinos or the CP phase parameter of neutrino
mixing still remains unkonwn. In order to investigate theseproperties of neutrinos, it is essential to
have a much more intense and pure neutrino beam. Among the proposed beam lines, the beta-beam
has several unique features. Since the beta-beam facility can produce pure electron neutrinos or
anti-neutrinos from the decay of stored radio-active ion beams, it is not necessary to identify the
charge of leptons in the far detector, this will ease the requirements of the far detector. In this paper,
we study the performance of the water Cherencov detector with a beta-beam in light of experience
gained from the Super-Kamiokande analysis.

2. Neutrino Measurement in a Ring Imaging Water Cherenkov Detector

Super-Kamiokande(Super-K) [1] is a 50 kt water Cherencov detector, which detects the Cheren-
cov ring image induced by charged particles and gamma rays. Atmospheric neutrino oscillations
have been established by the observation in Super-K [2]. Theenergy spectrum of neutrinos from
the beta-beam facility spreads from a few hundred MeV to a fewGeV. Therefore, it is possible
to use the same method as used in the study of atmospheric neutrinos. Since the beam direction
is fixed, the incoming neutrino energy is reconstructed as follows, by assuming charged current
quasi-elastic(CCQE) interaction;

Erec
ν =

mNEµ −m2
µ/2

mN −Eµ + Pµ cosθµ
,

wheremN is the nucleon mass,Eµ is the muon energy,mµ is the muon mass andPµ is the muon
momentum. The actual steps to search for CCQE events is as follows [2]: (1) search for an event
with a single Cherenkov ring of a lepton produced by neutrinocharged current interaction, (2)
classify the ring into two categories, e-like andµ-like, using the photon distribution of the ring
pattern, and (3) reconstruct the momentum and direction of the lepton using the observed ring
image. The resolution of neutrino energy for CCQE events is shown in Fig. 1.
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Figure 1: Resolution of neutrino energy as a function of the true neutrino energy for 1-ring, e-like, CCQE
νe events(left) and 1-ring,µ-like, CCQEνµ events(right).
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3. Analysis

The aim of this study is to estimate the detection efficiencies and the background in the search
for νµ appearance with a beta-beam and water Cherencov detector. As the tools to study these
items, we use available simulation and analysis programs from the Super-Kamiokande experiment
because their performances have been verified in the past atmospheric neutrino and accelerator
neutrino studies.

3.1 Neutrinos from the beta-beam facility

The properties of the neutrino beam from a beta-beam facility is determined by the type of
ion and its relativisticγ . It is possible to estimate the energy spectrum of the neutrino beam very
precisely because the kinematics of beta decay is very well understood. The mean energy of the
neutrino beam needs to be adjusted to maximize the sensitivities for neutrino observation. Usually,
the peak energy of the neutrino beam is adjusted to the oscillation maximum, which is determined
by the baseline together with the energy of the neutrinos. Inthis study, two baseline distances (L)
are selected as described in [4]. One of them is 130km corresponding to the distance from CERN
to Frejus, and the other is 700km corresponding to the distance from CERN to Gran-Sasso. For
the shorter baseline case, the oscillation maximum is around 0.4GeV , and for the other case, it is
around 1.5GeV . So here the neutrino beam of peak energy of∼ 0.4GeV is referred to as the ’LE
beam’ configuration, and peak energy of∼ 1.5GeV as the ’HE beam’ configuration. Also bothνe

and ν̄e beams are necessary to study CP violation and the mass hierarchy. These four sets of ion
andγ combinations have been identified as the candidate configurations, as described in [4].

3.2 Event selection criteria and signal efficiencies

At first, we apply standard event selection to eliminate the cosmic ray muons and the very low
energy events. The selection criteria are that there is no activity in the outer detector(FC event),
the reconstructed vertex is in the fiducial volume(FV), and the electron equivalent energy(evis) is
larger than 30MeV. The neutrino energy spectra for each beamconfiguration after this selection are
shown in Fig. 2. It should be noted that events other than CCQEinteractions will be dominant in
the HE beam configurations.

In the following analysis, the CCQE events need to be selected as discussed before. Because
the Cherenkov threshold of the proton in a water cherenkov detector is 1.1 GeV, only the lepton
is identified as a clear ring in this energy range. Therefore,an event with a single ring is selected.
Ring candidates are searched for based on the Hough transformation method [3] and the number of
rings are determined by the likelihood method. The selectedring is classified into two types [2], e-
like andµ-like, by using the difference of the shape of the ring. The misidentification probability is
about 1% for both atmosphericνe andνµ of CCQE events. Theµ-like selection probability in the
beta-beam neutrino sample after 1-ring selection is about 90% for <400MeV, 95% for >400MeV
energy region. However, the events selected as aµ-like event sample contain the charged pions
because the ring shape of the charged pions are similar to themuon rings, rather than the elec-
tron rings. So the events except CCQE interaction are contaminated. In order to eliminate those
charged pion events, events with 1 decay electron are selected. Because the interaction probability
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of charged pions in water is quite large, a large fraction of the charged pions interact before de-
caying. The efficiency of detecting decay-electrons in Super-K is 80% (63%) forµ+ (µ−). The
summary table of event selection efficiencies is shown in Tab. 1.
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Figure 2: The rate of neutrino interactions in water Chrencov detector for each beam setup.

LE beam HE beam

CC νeselection

FC, FV, evis

1-ring

µ-like

decay-e

final sample

CC νeCC νµ CC νµ CC νe CC νeCC νµ CC νµ

100% 100%100% 100% 100% 100%100% 100%

94.8 94.496.6 95.8 81.3 72.779.6 68.0

1.2 1.295.7 95.1 0.9 0.798.8 97.6

<0.0 2.481.4 65.2 6.6 15.166.7 54.8

<0.1 <0.175.3 59.4 <0.1 <0.152.5 36.4

Table 1: Summary of selection efficiencies of CC events for each beam set. After standard selection(FC,
FV and evis>30MeV), the numbers in each selection step show the probabilities after the previous step.

3.3 Background events

Major background events in the search forνµ appearance signal are produced by NC interac-
tions, beacause pions are selected asµ-like events. The cross-section of the NC pion production
is larger of higher neutrino energies and thus, the fractionof the backgournd events get higher in
the HE beam as shown in Fig. 3-(c),(d), in which true paramteres are assumed: sin2 2θ13 = 0.15,
sin2θ23 = 0.5, ∆m2

= 2.5×10−3eV 2 andθ12 = 0 (no matter effect). Moreover, the momentum of
the pions are rather low because most of the pions are produced via decay of resonances. Therefore,
the reconstructed energy using the misidentified pions is rather low and not sensitive to the energy
of the parent neutrino.

But, in case of the reconstructed energy distributions (Fig. 4-(1)), the NC events are peaked at
lower energy because of the different kinamatics between QEand NC events. It is therefore easy
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to distinguish these background events from the signal. Forthe sin2 2θ13 = 0.01 case (Fig. 4-(2)),
it is difficult to seeνµ signal, especially in the HE beam(Fig. 4-(2-d)).
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Figure 3: The final sample neutrino true
energy distributions for each beam type,
in case of sin22θ13 = 0.15. The different
event types are shown in different colors
as shown right side.
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Figure 4: (1) are the reconstructed energy
distributions in case of sin22θ13 = 0.15. (2)
are in case of sin22θ13 = 0.01.
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4. Conclusion

νµ appearance measurement by using beta-beams and water Cherencov detectors is very
promising as a future neutrino oscillation experiment. In these experimental configurations, the
signal detection efficiencies of a water Cherencov detectorare expected to be 75.3%(59.4%) for
ν̄µ (νµ ) from the LE beam and 52.5%(36.4%) for̄νµ (νµ ) from the HE beam. Meanwhile, becasue
the interactions other than CCQE interaction become dominant at high energy, the rate of back-
ground increases in the HE beam configurations. Mainly, misidentification of the pion’s rings from
NC νe pion production is the cause of the background.
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