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1. Introduction

Hawking discovered that black holes radiate as black batiegen from infinity. The original
derivation [1, 2] involves explicit calculation of partectontent in particular vacuum in the context
of QFT in curved space-time. Hawking radiation seems to lngetsal effect that accompanies the
existence of the horizon. It has not been seen experimgniall Nevertheless, it seems robust
in the sense that: different independent derivations agbeeit the temperature of the radiation;
Hawking radiation exists for all types of black holes andref@ horizons which are not related to
black holes (such as cosmological horizons); it is kinecahtffect and independent of the gravity
theory under consideration; it completes the picture oflblaole thermodynamics by justifying
the identification of temperature with surface gravity. 8ap [3], [4] for further discussion.

Some time ago Hawking’s radiation was derived using traasmeaties [5] (see also [6, 7,
8]) and more recently using diff anomalies [9]. Diff anomalgproach was further developed
in [10, 11, 12] (for a review, see e.g. [13]). One hopes thamnaaly approach can explain the
robustness of Hawking radiation. In the following we revitve trace anomaly approach, the
recent [14, 15, 16, 17] calculation of spectrum of Hawkindja#ion using anomalies and note the
nonexistence of the anomalies for higher spin currentsl1p,We consider a Schwarzschild black
hole dimensionally reduced to two space-time dimensions.

2. Trace anomaly method for calculating Hawking radiation

We work in the background given by

ds? = f(r)dt®> — %drz (2.1)

The conservation equation and trace equation are anomahouisave the form:

h CR—CL
and
T“—i(c +c)R (2.3)
o T agp Rt '
By integrating (2.2) and (2.3) we get
Tu(WY) = 5 cr 02 — 2(0,9)2 ) + T () (2.4)
’ 241 u 2

where¢ =logf,u=t—r,,v=t+r,. The quantityTu(So')(u) is an integration "constant" with

respect tov.
Now, consider the case wheap = ¢, which leaves us only with the trace anomaly. We
introduce Kruskal coordinatés = —e %Y andV = €V. Under this transformation we have

0 2 0 h
0 - (L) (W0 fEuw) @5



Hawking radiation, anomalies and W-infinity algebra Maro Cvitan

We put in boundary conditions: (Iﬁjﬁo')(U) regular at the horizot = 0 (which implies in

particular thafT,,(r = ry) = 0) (2) T,y = 0 at infinity (since we consider the situation when there
is no incoming flux):

TLSTJO') (U) is regular at horizon (2.6)
Tw = 0 atinfinity

Now the flux at infinity can be calculated (see e.qg. [14])

hk?

(M) = (Tu) — (Tw) = ETCR 2.7

3. Spectrum of Hawking radiation and W.,.-algebra

Iso, Morita and Umetsu [14] noticed that the vacuum expextatalues of fluxes of certain
higher spin currents at infinity reproduce the moments

OB /+oo wk572
Fo.= 2 dk 3.1
ST An) »  ePw—1 (3.1)

of the energy distribution of the blackbody spectrum in thime way as spectrum of spin 2 current
(i.e. energy momentum tensor) reproduces total energyi.enoment. This higher spin currents
need to be somehow prescribed. In [14] prescriptions fooiicshigher spin currents are given, but
there remains an arbitrariness in relative constants détines with the same number of derivatives.

To fix better the definition of these currents, one can cholesetirrents that satisfy certain
properties, such as symmetries. To this end, the curretgsnii@ed by\,.-algebra were used in
[16]. The currents are defined by (see [18] and also [19, 2)), 21

i¥22) =B(9) T (~*AF : k(205 0(2): (3.2)

(0(z1)9(22)) = —log(z1 — 2) (3.3)
(0(21)9(22)) =
<§_0(Zl)€_0(22)> =
and
i, 2573 s 1 (s—1\(s-1
8BS =3 Ak—sT1< ’ ><s—k> 34)

They satisfy &\, algebra [18]. It is worth recalling that thi&,, algebra has a unique central
charge, which corresponds to the central charge of the Mioasubalgebra. The first few currents
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are
i = — :0,00,9: (3.5)
i = 5( 0,932¢: — :0200,9:)
jar= :—5L( 0,003¢Q: —3:0290%¢: + :0300,9:)
[hrr= — (azqoa“fp —6:020039: +6:030070: — :000,:)

j(6)
272227

412( 0,002 ¢: —10 :029d; @: +20:039d3¢p: —10:0;9d2@: + :079,:)

where normal ordering is defined as
:0"90"™g: = lim {070(21)9;0(22) — 0305 (9(21)9(2)) } (3.6)

As usual in the framework of conformal field theory, the operaroduct in the RHS is understood
to be radial ordered.

Now, in order to use the trace anomaly approach we need to fivariant version of these
currents. This was done in [16] following [14]. According tiee recipe explained there, the
covariant counterpad®, of &, should be constructed using prescription

13N @alNp: — eMtmo) Iim{ 0 (L) =Me (L) [0 1M g — —C”mﬁ} (3.7)

e—0

wherecm, = (—)™(n+m— 1)! are numerical constants determined in such a way thatregugar-
ities cancel on the right hand side.
After some algebra one gets

W = j&f)—gfr (3.8)
I = i
S = Jtuu+ BZTer E‘IJSJ
Hohwu = okt 170‘7 Ik
and
oy = < égﬁ ;&(dﬂ) - Hﬁeswzfr (3.9)
—%TZJS%,) - Z—TDﬁJSﬁ) S (537) 3+ 432 (8,T) 0,32
—%FTDUJM - zilrzmﬁu) + 251r (8,7) JS,?) - 2—547J5,uuu+ iy
where
=020~ 5 (29)’ (310)
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These equations are the higher spin analogs of (2.4). ltssiple to calculate analogs of (2.2)
and (2.3) for these higher spin currents i.e. to calculad& thace and diff anomalies (see [15] for
a discussion). Putting in boundary condition analogou®16){ one is able to calculate fluxes at
infinity corresponding to these currents. The fluxes repredtorrectly the moments; (3.1) of
Hawking radiation. It should be noted that the currents)(8r&l (3.9) do not (fos > 2!) possess
trace anomalies (in the regularization scheme (3.7) udedjead, the Hawking radiation and its
moments derive only from trace anomaly of energy momentumsaies = 2, together with trans-
formation properties of higher currents (details in [18]was shown in [16], using cohomological
methods, that there could be no trace anomaliestfer4 current. Furthermore in [17], it was
shown, that there could be no consistent diff anomaliester4 currents. In the following we
outline the proof for the case of trace anomalies and, vefliarthe proof for the case of diff
anomalies.

4. Absence of trace and diff anomaliesfor s= 4 current

The covariant form of the current discussed in the previaesien does not give rise to any
trace anomaly. This is at variance with ref.[15], where thierth order covariantized current ex-
hibits a trace anomaly which is a superposition of three $erfim,[],R, g,v[JR and gWRZ. It is
therefore important to clarify whether these are true ariemar whether they are some kind of
artifact of the regularization used to derive the results.

We look at the possible anomalies of the fourth order cuﬂﬁf}tp which couples in the action
to the background fielﬁf\z)\p = Buvap, both being completely symmetric tensors. The relevant
Weyl transformations are as follows. The gauge parametertha usual Weyl parameter and

the new Weyl parametens,, (Symmetric inu, v). The variationd; acts only orB,,,, (see [22])

OrBuvap = Guv Tap +9ux Tvp + Gup Tva +9ua Tup +Gup Tur +Gap Ty (4.1)

while ¢ acts ongyy, Ty @andByy, , in the following way

0oQuv = 20 Quv (4.2)
50'-[“\/ - (X_ 2) GT[JV

5UB;1V)\p = XO'B“V)\p

wherex is a free numerical parameter. The transformation (4.2)aridB are required for consis-
tency with (4.1). The actual value g&fturns out to be immaterial.

Note that Ward identity fod, for energy momentum tensor gives the trace anomaly equation
In the same way for spin 4 current the Ward identity égrwould give the corresponding trace
anomaly equation.

Next step is to promote andt to anticommuting fields:

0°=0

I\We verified this up to order 10.
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and verify that the corresponding variations are nilpotent
52 =0, 52=0, 050+ 0;0, =0

The anomalies are by definition variations of the one—looangum action™ (@ (which is a
nonlocal quantity)

50TV =hA,, &Y =hA, (4.3)

Acting with the variations once again, using nilpotencyge dimds that the candidates for
anomalies\y; andA; must satisfy the conditions

5‘[ Ao‘ + 5UAT = O
5‘[A'[ - 0

which are the Wess-Zumino consistency conditions.
We have to make sure thA, andA; are true anomalies, that is that they are nontrivial. In
other words there must not exist a local countert€rim the action such that

::&/ﬁ&c (4.6)

If such aC existed we could redefine the quantum action by subtradti@sget counterterms and get
rid of the (trivial) anomalies.
We start by expanding candidate anomalies as linear cotidoiseof curvature invariants

11
AUZ/H&«igzqn 4.7)
i=
m_/¥x gzma 4.8)
wherel; are linear inB*VA and o
I, = oR (4.9)

I, = B¥AP 0,0,0,0,0
I3 = B*RO,0,0
I, = B* 0,0,00
ls = B* 0,0,Ro

Il = BORO
l; = BRo
lg = B¥ O, RO,0
lg = BROo
l1o = Bg"’ O,RO,0
l;1 = BO%0
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(B*V = B“‘Mpg)\p, B = BHgyy). The termly corresponds to the usual anomaly of the energy—
momentum trace (which is consistent and nontrivial). Tfeeeein the sequel we disregard it
and limit ourselves to the other terms which contain 4 déxiga. SimilarlyKy are independent
curvature invariants that are linearip, and contain 4 derivatives:

Ky = O 0yRTHY (4.10)
Ky = RZT
Ks; = 0ORT

wheret = gHV 1.

Now, the idea is to see what constraints to the form of coefiisi do WZ consistency condi-
tions (4.4) give. It turns out that of all coefficientsand b, only 3 of them (saycy, C10 andcys)
become independent. Furthermore, for any choice of thesaingng coefficients counterter@
can be found. The countertei@is a linear combination

7
C:/d2x gy diC; (4.11)
j=5

of the following curvature invariants

Cs = B*V[,0,R (4.12)
Cs = BOR
C; = BR

whered; are determined in terms @§, cio andcys.
Our conclusion is therefore that not only the trace anommdtiend in [15] are trivial, but that
there cannot be any anomaly whatsoevelf¥# ;, ,.

For the case of diff anomalie!ﬁf) andA(f') the WZ conditions we need to solve are

& =0 (4.13)
509 — 0 (4.14)

with the cross condition
&0, + 80" =0 (4.15)

whereéH is the vector field generator of diffeomorphisms (corresiyog to the conservation of
energy momentum tensor) amg, .., is completely symmetric and traceless tensor field (corre-
sponding to the conservation of higher spin currdft). The variationsd; act as (see [17] for
discussion)

O &H = &4, &H (4.16)
5Eguv = Dufv + DvEu
5£Tuvp = E)\a/\ Tuvp+au5/\ T/\Vp—i—ﬁvf)\ Tu)\p‘i'apf)\ Thva

4 4 4 4
O B;—U)---IJA = E)\ ) BI(JI)MI»M + dl—llé)\ BS\.?.W, to aH4EA BLB...)\
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and the variationg; act as

&M =0 4.17)
0rguv =0
5TT[JVA — O

4) _
Or BIJ1IJ2H3IJ4 - Dul Tpopaps + CyCI'

Again, as for the trace anomaly cagé, andt,,, are promoted to anticommuting fields and it is
verified thatc‘SE2 =0,02 =0, & + 55 = 0. One proceeds as in the trace anomaly case, finding

the consequences on the candidates for the anonis@?éand A(T4). Here, one cannot assume
from the start that the anomalies are covariant. Insteatharéechnical analysis is needed. It is
presented in Appendix B of [17], and uses results from [23,25}. Fortunately the result of the
analysis is simple: the solution to (4.13) is trivial iﬁg‘) = O¢ C™. Consequently we can rewrite

(4.15) asd; (ALY — 5,C@) = 0. This means that any solution to (4.14) can be written infta di

covariant form i.e. one can use the covariant candidateA(Tf&r They can be easily enumerated,
and it turns out, as a consequence of tracelessnesg pfthat they are trivial.

We conclude, therefore, that there are no non-trivial gdast anomalies in the divergence
of the fourth order current. Extending this proof to silvould require solving generalizations of
(4.13) for highers. It is plausible to assume that its solution, analogouslg t64 case, would
enable the use of covariant candidates. Under this assumipis was shown [17] that for all the
higher (eveR) sthere is no diff anomaly.

5. Conclusion

Our calculations indicate that there are no trace and difraalies for higher spin currerits
s> 2. This was shown fos = 4 using cohomological methods. Under plausible assumptioa
cohomological proof for diff anomalies was extended tosglil7]. Also it was shown folW,-
algebra currents in the regularization scheme defined by3x). forsup to 10. These results are
obtained using 2 spacetime dimensions.

The moments of Planck spectrum of Hawking radiation areodyored if the high spin currents
are taken to be the covariantiséé,-algebra currents [16].
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2We consider only evessince for odds the fluxesFs are vanishing [14].
3Energy momentum tensor itseff £ 2), can have, as is well known, trace and diff anomalies.
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