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1. Introduction

Hawking radiation is one of the most important and prominent quantum effédaak hole
physics. There exists a close resemblance between the black hole anaf lls@smodynamics,
even at the classical level [3]. However, Hawking [4] showed, Iplieit computation of Bogolu-
obov coefficients between 'in’ and 'out’ state, that black holes do emiatiadh and the spectrum
of this radiation exactly matches with the thermal radiation coming from the blatykept at ap-
propriate temperature. Apart from this there are several approfgh®sr] to calculate the fluxes
of Hawking radiation with each of them having their own merits and demerits.eMexyvthe fact
that no one derivation is truly clinching has led to open problems leading toatiex approaches
with fresh insights.

Anomaly might be recalled is a breaking of classical symmetry due to the grotesianti-
zation [8, 9]. Specifically, for instance, a gauge anomaly is breakddwawge symmetry, taking
the form of nonconservation of the gauge current. The cancellatiogeganomaly gives strong
constraints on model building. Similarly, a gravitational anomaly is an anomaly getieral coor-
dinate invariance and it is manifested in the nonconservation of energy-m@méensor. Role of
the anomaly in deriving the Hawking radiation is not surprising. Indeedsing the trace anomaly
Christensen and Fulling [10] were able to reproduce the expected resitiftsugh this method is
restricted for conformal fields propagating(ib+ 1) dimensional black hole background, it nev-
ertheless indicate the importance of the quantum anomaly in the context ofiridaveldiation.
Recently, Wilczek and collaborators [11, 12] gave an interesting methodnpute the Hawk-
ing fluxes using chiral gauge and gravitational anomalies. Unlike the tremaaly approach this
method is expected to hold in any dimensions. However, an unpleasamefeffil, 12] was that
while the expressions for anomalies were taken to be consistent, the bpaoddition required
to fix the arbitrary constants were covariant. Hawking fluxes were th&irau by cancellation of
the consistent anomalies. This was rectified by us [13] by providing a singptiéevation using
only covariant expressions of anomalies as well as boundary condition.

The approaches of [11, 12, 13] are based on the fact that e#fid@id theory near the hori-
zon become two dimensional. From this two dimensional theory if we formally reni@/modes
which are going in to the black hole then the effective theory becomes chimgtwo dimensional
chiral theory possesses gravitational, and if gauge fields were pregame anomalies. Such
anomalous theories admit two types of anomalous currents and energy-tmon(&M) tensors:
the consistent and the covariant [8, 9, 14, 15]. The covariantghvees of these currents/EM
tensors yields either consistent or covariant gauge/gravitational ansrfgli@, 15, 16, 17]. The
consistent currents and anomaly satisfy the Wess-Zumino condition budtdeansform covari-
antly under gauge or general coordinate transformation while the oppegiige for covariant
currents and anomaly. Similar conclusions also hold for gravitational case.

In our approach [13] we have reformulated the analysis of [11, 12fimdef only covariant
expressions. The consistent expressions were completely bypabkere are two distinct ad-
vantages of such an approach. First, since the covariant bounolagiitions are necessary, it is
conceptually clean to discuss whole analysis from covariant point of viavether point is that
the calculations become much simpler and compact. Also, as we shall discusth&at®variant
anomaly approach is much suitable to compute the higher spin fluxes of Havediggion. In
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this case it is essential to use the covariant expressions since, onlyvidigaob expressions of
anomalies and higher spin current are known [18].

In another new development, also based on the chiral gauge and difignisTa anomaly,
Hawking radiation was obtained by us [1]. An important ingredient in this@ggh was that,
unlike the anomaly cancellation mechanism [11, 12, 13], only the exprassfarhiral covariant
currents and covariant EM tensors, obtained from the near horidoal effective action, together
with the covariant boundary condition, were shown to be sufficient to cterthe Hawking fluxes.
The starting point is the structures for the two dimensional effective actiith are known for
the chiral (anomalous)[19] and usual (anomaly free) [20, 21] cadesrelevant expressions for the
covariant gauge current and the covariant EM tensor are obtaintkimg appropriate functional
derivatives of the chiral effective action. The arbitrary constart$iaed by imposing the covariant
boundary condition namely, the vanishing of covariant current andd&ri@ant EM tensor at the
event horizon. The Hawking fluxes are then correctly reproducedediligg the asymptotic infinity
limit of covariant currents and EM tensors. Finally, we note that the asymtotits for currents
and EM tensors obtained from this analysis are exactly matches with the asignwaloes of
currents and EM tensors computed form the usual effective actior2 J20Note that all the above
approaches [1, 2, 12, 13, 20], to compute the Hawking flux, uses the baundary condition.
Naturally, one would seek for further clarification of the covariant liaug condition. Indeed,
in our very recent work [22], also based on chiral effective actippreach [1], we provide a
detailed explanation of this covariant boundary condition. There we tioétdhe current and EM
tensor obtained by solving the anomaly equations subjected to the covasiamdadry condition
agrees exactly with the result derived from the chiral effective actitiypimposing the boundary
condition appropriate for the Unruh vacuum.

There is one more quick and efficient method to obtain the Hawking flux biigflgduced
in [2] which uses only the knowledge of covariant anomalies near thedroriZontrary to earlier
approaches [11, 12, 13, 20] a splitting of the space in different regioear to and away from
the horizon) using discontinuous step functions were avoided. As wedssrzuss in subsequent
section, the computation of the Hawking fluxes associated with higher spientsican be done
easily in this approach.

The organization of this paper is as follows. The calculation of Hawkingfflom generic
spherically symmetric black hole using chiral effective action is discusseddtion 2. Also, the
role of chirality in imposing constraints on the structure of the current/EM teasgucidated. In
section 3 we compute the higher spin fluxes the Hawking radiation. In paricudaadopt the
covariant anomaly method [2] to compute the fluxes associated with the spinctinmeent. Our
concluding remarks are contained in section 4.

2. Hawking fluxes from chiral effective action

Consider a generic spherically symmetric black hole represented by the,metric
1
h(r)
wheref (r) andh(r) are the metric coefficients. The event horizon is definedi(oy) = h(rn) = 0.
Also, in the asymptotic limit the metric (2.1) become Minkowskianfi(e — o) = h(r — o) =1

ds? = f(r)dt?> — —dr? —r?(d6? + sirf6d¢?) (2.1)
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andf’(r — o) = f"'(r — o) =h"’(r — ) =h"(r — ) =0.

Now consider quantum fields (scalar or fermionic)propagating on thisgoacnd. It was shown
that [11, 12], by using a dimensional reduction technique, the effefiiicetheory near the event
horizon becomes two dimensional with the metric given byrthe section of (2.1)

L1

h(r)drz . (2.2)

ds? = f(r)dt®> —

Note that/—g = /—detg,y = \/E # 1 (unlessf(r) = h(r)). On this two dimensional back-

ground, the modes which are going in to the black hole (for example left mavimdes) are

lost and the effective theory become chiral. The effective action septang such chiral theory is
known in the literature [19]. We adopt the following strategy. The exjpwasgor covariant current
and the covariant EM tensor will be deduced from this chiral effectdtea , suitably modified

by local counterterm. Local structures are obtained by introducing agxileriables whose so-
lutions contain arbitrary constants. These constants are fixed by impggingpaiate boundary
conditions.

The two dimensional chiral effective action [1, 19] is defined as,

M) = — 32(0) + 2(A) (2.3)

whereA, andw, are the gauge field and the spin connection, respectively, and,

1
2(v) = E/dzxdzyg“"duvv(x)A—l(x, Y)0p (€77 + =997 Vo (y)] (2.4)
Here A~ is the inverse of d’Alembertias = OO, = —150,(/—9¢"’dy) and e = —&" =

—&r = & = 1. From a variation of this effective action the energy momentum tensor amghtige

current are computed. These are shown in the literature [8, 9, 1461%/]as consistent forms.
To get their covariant forms in which we are interested, however, appate local polynomials
have to be added. This is possible since energy momentum tensors agmt<are only defined
modulo local polynomials. Thus we obtain,

Oy = /dzx\/—g (;5guvT“V+6A“J“) +1 (2.5)

where the local polynomial is given by [19],
= 1 [ dox et (AuBA, — wdwy — —RESEE 2.6
= X E (p v—éwu Wv—ﬂﬁ v) (2.6)

The covariant energy momentum ten3dt’ and the covariant gauge currelt are read-off from
the above relations as [1, 19],

e
™, =— (D"BD,B
v 4n( vB)
1 /1 1 1
— ( =—-D*GD,G— —D"D,G+ —dR 2.7
+4rr<48 To2am Y +24V> @)
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&
M =—-_DMB. 2.8
o (2.8)
Note the presence of the chiral covariant derivafiyeexpressed in terms of the usual covariant
derivativel,,

DIJ — Du - Euvl:lv — —S_uva, (29)

whereg,, = /—ge,y andeH’ = ﬁs“". The auxiliary fieldB andG in (2.7,2.8) are defined as

B) = [ &% v=eA M xY)EV A Y) (2.10)
6 = [ dy =gt xyRY) 2.11)
so that they satisfy
AB(X) = MV, A (X) (2.12)
AG(X) = R(X) (2.13)

whereR is the two dimensional curvature scalar, and for the metric (2.2) it is given by

f'h f'H f/2h

R=7F 21 21

(2.14)

It is possible to reproduce the covariant gravitational/gauge Ward iderjtiti€ds 9, 16, 17, 19]
from (2.7,2.8). For example, using (2.8), (2.10) and (2.12), we find,
e e —€?
IJ = —— pry —7_‘“/ pry “V
Oud 5 AB=—_guA = e Fuv (2.15)

This is the expression for covariant gauge anomaly [8, 9]. Similarly, weeeaily show, by using
(2.7-2.13), that the EM tensor (2.7) satisfy the covariant gravitationati\identity, given by [1,
19],

1

The first term in the above expressions is the classical Lorentz foroe werile the second term is
the covariant gravitational anomaly [16, 17]. Note also the presence obtfariant trace anomaly

following from (2.7)
R

481
The chiral theory has both a diffeomorphism anomaly and a trace anomaR).(Z'his is distinct
from the vector case where there is only a trace anofﬁﬁlx = % while the diffeomorphism
invariance kept intact.

Solutions of (2.12) and (2.13) are given by,

™, (2.17)

_ B . _An)+c
B(X) =Bo(r) —at+b; 6By = J/Th (2.18)
and 1 o
G=Go(r)—4pt+q; erO:—W(\ngrz) (2.19)



Hawking fluxes and covariant anomalies Shailesh Kulkarni

wherea, b, ¢, p,g andz are constants. Now, by substituting (2.18) in (2.8) we obtain,

J(r) = Zn‘\a/zjg[At(r)JFCJra] (2.20)
J(r) = ;TZf[Mr)JFCJra] = \/fngf. (2.21)

Likewise, by using (2.18,2.19) in (2.7) we find

roo_ € o 1 =~ 1 | —
T = =g O =gt O 2any =gl =gt QL (222)
r _ R Vo
Tr=gen 1 (2.23)
R
T =T+ an (2.24)
with A (r),P(r) andQ(r) defined as
A(r) = A(r)+c+a (2.25)
P(r) = _j,(j?g“) (2.26)
Qr) = %hf”—%(g—h’) : (2.27)

From equations (2.20,2.21) it is evident that there is only one independemgonent ofl#. The
point is that currend* (2.8), derived from the chiral effective action, satisfy the chiralitydiban
[22]

Ju=—gnd’, (2.28)

which fixes one of the component & . This can be further illustrated by transformid¥ to null
coordinates given by

v:t+r*;%:\/fh (2.29)
u=t—rx (2.30)

The metric (2.2) in these coordinates looks like
ds? = f(zr)(duvar dvdu. (2.31)
Then by substitutingt = v in the chirality condition (2.28) we get
J=0, (2.32)

while J, cannot be determined, solely, from the chirality criterion. Similar considestaiso
holds for stress tensd” (2.7) .

1See [22] for detail discussion of chirality.
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Next, we fix the arbitrary constants appearing in the expression ofrtufré2.20) and stress
tensorT" , (2.22) by imposing the covariant boundary condition [1, 2, 12, 13, 28inely, the
vanishing of covariant current and covariant EM tensor at the hoiizo

J(r=r) =0 (2.33)
T'((r=rn) =0, (2.34)
this yields, from (2.20)
ct+a=—A(rn) (2.35)
while, from equation (2.22) we get
1
p= er(zj: fr(rp)h'(rn)) . (2.36)
Finally, by substituting (2.35) in (2.20) we obtain
I = A A @37)
= =g (1) ~Admm)] '
(2.38)

and the other componedt is determined from (2.21). Similarly, from (2.22) and (2.35,2.36) we
get the expression far" ; :

€

V=gT' (1) = ET[At(f)—At(fh)]2+[N{(r)—N{(fh)] (2.39)

where,

I 2
LA h). (2.40)

1
r_ R
N = g6 (hf T T
Now we observe that the covariant gauge (2.15) as well as gravita(idri#l) anomaly vanish
at r — o) limit. Thus, we can compute the Hawking charge and energy flux, whictichee
measured at asymptotic infinity, by taking the asymptotic infinity limif'df) (2.37) andT" (r)
(2.39).

Charge flux= J'(r — ») = —;A(rh), (2.41)

2(t) + = (1) (1) (2.42)

— r =
Energyflux=T" ((r — ») = 1921

ArT
These are the desired expressions of Hawking charge and enecdroftuthe generic spherically
symmetric black hole and it agrees with the result obtained by anomaly cancedafooach [23].

3. Higher spin fluxes via covariant anomaly

In this section we compute the Hawking flux obtained from higher spin anomnialgyor-
responds to higher spin moments of Hawking flux. These results haver egppeared in [18]
using anomaly (covariant) cancellation mechanism [13]. Also, recentlyr8aral collaborators
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have computed the Hawking fluxes associated with the higher spin cumsirtg,the usual trace
anomaly and the properties\ot, algebra [24, 25].

Here we would present an alternative derivation based on the apydrdatly discussed in [2].
An important advantage of this approach is that the computation involved anBxfiressions for
anomalous covariant Ward identities and the covariant boundary corglifitwe splitting of space
into two regions, which was essential in the approaches [11, 12, 13isZdjoided. First, for the
sake of completeness, we shall discuss the covariant anomaly app2péaeitompute the fluxes
of Hawking radiation associated with the gauge current and stress fard&tail. Then, it is easy
to generalise this analysis to obtain the Hawking fluxes associated with the bgiheurrents.

For the right moving modes the expression for covariant gauge anoma¥weislty [8, 9],

&
Oy dH = — e%PF,p . 3.1
Note that the same Ward identity (2.15) was also obtained in the previous segtexploiting
structure of the chiral effective action.

For a static background (2.2), equation (3.1) becomes,

€
or(vV=gJ) = 5_0A . (3.2)
Solving this equation we get
v—9J =cy +§T[A[(r)—At(rh)]. (3.3)

Herecy is an integration constant which can be fixed by imposing the covariantiaoyinondition
(2.33) lead tay = 0 and hence the expression for the current becomes,

P e
~2ny/=g
Note that the Hawking flux is measured at infinity where there is no anomaly.nEgessitated a
split of space into two distinct regions - one near the horizon and one fromyit - and the use
of two Ward identities [11, 12, 13, 20]. This is redundant if we obsereg tine anomaly (3.2)
vanishes at the asymptotic infinity. Consequently, in this approach, the fhlireistly obtained
from the asymptotic infinity limit of (3.4):

[A(r) = Ac(rn)]- (3.4)

ezAt(rh) '

o (3.5)

Chargeflux=J"(r — «) = —

This reproduces the familiar expression for the charge flux [1, 2,32, 1
Next, we consider the expression for the two dimensional covariantgtianal Ward identity
[1, 13, 19] (see also (e.2.16) in the previous section),

evH
v _ uv
OuT JuF™ + 796n\/ng“R (3.6)
andRis given in (2.14). Now by simplifying (3.6) we get, in the static background,
A (r A(r
(/=g ) =aN () - EX g A () 16 TE) 37)
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whereN/ (r) is given in (2.40). The solution for (3.7) is given by

2 2
VAT = bt NG — N )]+ S & () + R0

(3.8)

Hereby is an integration constant . Implementing the covariant boundary conditid4)(Zields
by = 0. Hence (3.8) reads

V=aT () = [IN((r) = N{ ()] + i[At(r) —A(rn))?. (3.9)

Since the covariant gravitational anomaly (3.6) vanishes asymptoticallamvexenpute the energy
flux as before by taking the asymptotic limit of (3.9)

energy flux= T" ((r — o) = =N/ (rp) + ez'ﬁ(Trh)
1 €A (rh)

f'(rn)g (rn) + (3.10)

1921 am

This reproduces the expression for the Hawking flux found by usingtioenaly cancelling ap-
proach of [1, 12, 13, 20].

Now we concentrate our attention on the higher spin currents. Particulglghall do our
analysis for spin 3 curredt' vp- The covariant expression for divergent anomaly for spin 3 ctirren
is given by [18],

0u(RH)  Tp(RY)
16 16

[evo OO, FY

O vop = —Fvqu“ —Fou ™' —

1 1
Qv (RM) + ———
e u(RY)+ 575
+&,6 07 0uF) — QupEac 00, FH] (3.11)

hereTH , andJ* are covariant EM tensor and U(1) current respectively. In the @lespression
term in the square bracket represents the anomalous (quantum) cortectiee classical result.
This piece is the spin 3 generalization of the divergence anomalies in théeteutrgravitational
backgrounds. Note that the expectation value of the current depahdsror in the static black
hole background taken here (2.2), hence, the relavanp =t component of (3.11) becomes,

1 1
o (V-9 ) = 2R/ T’ t—gmt(R4)+T69ttDu(RJ“)
1
+2l~20 OuFY ¢ — GuEao 070, FH] (3.12)
The solution for above equation is given by
— 1T _ ' f'(rn)h'(rn) _ezAt(rh) 2 _eZA(rh) " //_Zflzh

N DH+/rh dr, [ () - ST () - SR g - ST

3 2 / h” + £/ — 22 A (r
LA hIgA() | hTaA() ) U]. (3.13)

e 961 481 32
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whereDy is an integration constant and its value is determined by imposing the covariarddry
condition,J" (r =rn) = 0, this yieldDy = 0. Now, the anomalous part in (3.11) vanish in the
asymptotic infinity limit. Hence the Hawking flux for spin 3 current is just givgrib ,; (r — ),

Frm)b ()~ AX(r) (3.14)

I oulr =) = =gy 6m

This result coincide with appropriate (n=2) moment of the Hawking flux.[18]

4. Conclusions

In this paper we discussed in detail the effective action approach {ithercovariant anomaly
method [2] to compute the Hawking flux from generic spherically symmetric latk First, the
effective action approach was discussed. As stated in [11, 12], ibgleat, classically, the contri-
bution from ingoing modes, then the near horizon effective theory bezahieal. Consequently,
this theory can be represented by the chiral effective action [1]. Dhari@nt expressions for
currentJ* and stress tensdr¥ were then obtained from this chiral effective action, modified by
the local counterterm. Expectedly, current and stress tensor satisgfgpyhgant anomalous Ward
identities. Arbitrary constants appearing in the expressiond"fandT" ; were fixed by imple-
menting the covariant boundary conditions [13]. Then by noting the fattabvariant gauge as
well as gravitational anomalies vanish in the asymptotic infinity limit, the Hawkinggehand
energy flux were computed by appropriately taking the asymptotic limit of thar@ou current
and the covariant stress tensor.

Further, we apply the covariant anomaly method [2] to derive the Hawkidigtion associated
with the higher spin currents. Contrary to earlier approaches [113120], this method uses only
the covariant gauge and gravitational Ward identities defined near ttmhoAnother advantage
is that unlike the anomaly (covariant/consistent) cancellation mechanism, splittsgace into
two regions - near to and away from the event horizon - using discontnsiep functions, was
avoided.

A reason in favor of working with the covariant anomalies is the fact thatfilmectional forms
are unique, being governed solely by gauge/diffeomorphism transfiemsa This is not valid for
consistent anomalies. This fact becomes crucial when we discuss tlez Bjgh fluxes. The point
is that for higher spin currents only the covariant expressions of adiesweere known [18]. Here
we performed the computations for spin 3 current. The fluxes of Hawkidgtion were obtained
by solving the covariant Ward identity near the horizon. In this case al$oeiasymptotic infinity
limit, the covariant anomaly vanishes. The Hawking radiation correspondisgin 3 current was
the obtained by taking the asymptotic limit of covariant spin 3 current. OQuttsamatches exactly
with the earlier finding [18] based on the anomaly cancellation approach.
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