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1. Introduction

Recent interest to black rings [1] stimulated search of newegating techniques for five-
dimensional Einstein equations both vacuum and coupleddtmwvand/or scalar fields. An efficient
tool to proliferate exact solutions to D-dimensional Eanstequations depending on three coordi-
nates consists in dimensional reduction based on the asismngb existence oD — 3 commuting
Killing symmetries (toroidal reduction). Starting with @mensional Einstein equations coupled
to scalar and vector fields one is able to derive a three-dsmaral gravity coupled sigma-model in
which the target space variables incorporate the initialass, vectors and moduli of the toroidal
reduction. For a particular class of theories the targetesparns out to be a coset spaGgH
whereG is some semi-simple group known as the hidden symmetry dffouja recent review see
[2]). This symmetry can be used to generate new solution farown ones with the same three-
dimensional metric. The sigma-model representation ns&ysgrve a basis of further reduction to
two dimensions [3] (looking for solutions depending onlytar variables), where more powerful
methods can be developed such as inverse scattering taehjdify Recently such an approach to
vacuum five-dimensional relativity has undergone an ingwesdevelopment [5] and resulted in
construction of rather sophisticated ring configuratiodls For charged rings no such technique
was available so far, though generation via some restrictgdformation involving vector fields
were used [7]. Our matrix formulation opens a way to develaghgnethods in the general case of
minimal andU (1)2 5D supergravities describing charged configurations.

Sigma-model generating technique for minimal five-dimenal supergravity was developed
in [8, 9], for an earlier discussion of hidden symmetrieshiis theory see [10]. The hidden symme-
try is this case is the non-compact versi@g, of the lowest exceptional group,. To formulate
the solution generating technique one has to use some meapigsentation of the coset. Rep-
resenting the seed solution in the matrix terms and actingybymetry transformations one can
extract the sigma-model variables for new solutions. IMJ8n explicit 7x 7 representation of
the coseGy,)/SL(2, R)? was constructed using the representatioGgfound by Gunyadin and
Gursey [11]. The generalization to the case of five-dimeraieupergravity with thred (1) vector
and two scalar fields was given in [12]. Apart from being moeeeyal, this theory is interesting
by the fact that the corresponding hidden symmetry is giwen Eamiliar groupSO(4,4). Actu-
ally, one of the ways to construct the matrix representatib@,,) consists in usinggO(4,4) as
a starting point [11] and imposing suitable constraintse Tiatrix representation of the relevant
three-dimensional cos&D(4,4)/30(4) x SO(4) is given in terms of the & 8 matrices which are
split into the 4x 4 blocks. By freezing the scalar moduli and identifying trextor fields one
reduces this theory to minimal 5D supergravity thus prawgdan alternative formulation of the
technique of [8] in terms of the 8 8 matrices.

Generation of the new solution appeals to transformaticin@target space variables by the
hidden symmetry group. This part of the procedure is purkgglaaic. Another part consists in
solving the differential dualisation equations relatihg target space variable to the metric and
vector fields [8, 12]. These equations have to be solved tvicst for the seed solution to obtain
its description in terms of the coset matrix, and then fortthesformed solution in order to extract
the metric and the matter fields from the transformed cos#étixnésolving these equations may
present technical difficulties on the second step if the gimg transformations are complicated
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enough. To remedy this problem, we propose to pass to ddalamables in the matrix form. Such
a possibility is suggested by the fact that the three-diioeas dual to the sigma-model matrix-
valued current one-form is closed by virtue of the equatioihsotion. Then locally it is exact,
and this provides the matrix-valued one-form whose extat@ivative is dual to the the initial
matrix current. This dual matrix transforms under the glamion of the hidden symmetry by
some related transformation, and thus it can be found agetily from the corresponding seed
matrix. From this can read out the metric and matter fielde®@ftansformed solution algebraically
avoiding the inverse dualisation problem.

Our primary motivation to develop the generating techrsgioe 5D supergravity was lack of
the general black ring solution possessing the electriegeisa(one in the minimal case and three
in theU (1)® case), the magnetic charges, the mass and two indepentiidn@arameters [1]. In
[8] an attempt was made to construct a charged black ringrgjarith the neutral solution with
two rotation parameters found by Pomeranski and Senkov [B8f the resulting solution was
plagued with a conical singularity. To be able to derive all@gsolution, one has to start with a
non-regular seed solution with an extra free parameteghwtin be fixed after the transformation.
In principle, from the counting of free parameters in thengfarmations preserving asymptotic
behavior of black rings, one finds that the general black ecangbe generated indeed starting from
some known solutions. But so far all attempts to find such atisol in a concise form were
unsuccessful.

In this paper we illustrate the application of our technigqgenerating new Kaluza-Klein
squashed black holes. These black holes look as five-dioraigiear the event horizon exhibiting
the S strucure, but asymptoticallg® collapses to a twisted bundle 8f over § with a constant
radius ofS! and growing radius o8, Thus at infinity they become four-dimensional objects with
a compactified fifth dimension. One such solution to five-disienal Einstein-Maxwell system
was proposed by Ishihara and Matsuno [14] (non-rotatintg.plysical parameters and thermo-
dynamical properties were investigated in [15, 16]. A dartdass (but not all) of squashed black
holes can be obtained by the so-called squashing transfiormarhis procedure was applied to
asymptotically flat [14, 17, 18] and non-asymptotically #afutions such as Kerr-Gédel black
holes [19, 20, 21]. In an attempt to enlarge the class of ispisit more recently Tomizawa, Yasui
and Morisawa [22] applie®,,) transformations of [8] to construct a generalization of¢harged
Rasheed black hole [23] obtaining a hew solution with fodejpendent parameters: mass, angular
momentum, Kaluza-Klein parametgr(in the notation of [23]) and an electric charge. Here we
will derive a more general five-parametric solution addisgaa independent parameter the quan-
tity o of [23], which corresponds to an electric charge in the fdionensional interpretation of the
Rasheed solution.

2. General setting

TheU (1)® 5D supergravity may be regarded as a truncated toroidal actifipation of the
11D supergravity:

1 1 1
l11= 16760, / <R11*11 1= 5P A*11Fg — Fg ARy /\A[3]> : (2.1)



Hidden symmetriesin 5D supergravities Dmitry V. Gal'tsov

whereF; = dA;. Assuming an ansatz for the metric
dsty = d2 + X1 (dZ + dB) + X2 (dB + dZ) + X3 (dZ + dZ), (2.2)
and the form field
Ag = At Adzy Adzp + AP A dzg Adzg + AP A dzs A dzs,

where all functions are independent nfwe obtain the the bosonic sector of 5D supergravity
coupled to three scalar modiii' (I = 1,2, 3), satisfying the constraintX?X3 = 1, and to three
vector fieldsA':

1 1 1 1
ls = ——— [ | Rgx5 1—=G3dX' AxsdX? — ZG3F' AxsF) — =&k F' AFIAAK 2.3
5= TomGe /( 5x51—5C1 *5 5C1F Axs GGJK , (2.3)
Gy = diag((xl)ia (X2)72’ (X3)72)7 FI :dAla 1,J,K= 17273'

Here the Chern-Simons coefficierigx = 1 for the indiced, J,K being a permutation of 1, 2, 3,
and zero otherwise. Contraction of the above theory to nahBD supergravity is effected via an
identification of the vector fields:

1

V3

and freezing out the modulX! = X2 = X3 = 1. This leads to the Lagrangian

Al=N=A="A

1 1
Z5=Rsx51— -F AxsF ———=F AF AA.
5=Rsxs1l— 5 5 33

It is worth noting that the 5D Einstein-Maxwell theory withicthe Chern-Simons term does not
lead to the three-dimensional sigma model with a semi-@rhdden symmetry group, so in this
case the solution generating technique can be formulatgdamrihe static truncation of the theory.

This explains why the charged rotating black hole solut@rmsnot known analytically.

2.1 Four-dimensional view

Consider reduction of the D=5 action (2.3) to four dimensioiWe assume that the 5D space-
time has the structureZs = .#, x S', whereS! is a circle, and is parameterized by the coordinates
{x*,z}, u=1,...,4 with zrelating to the circle. Following to the standard procedusedecom-
pose the 5D metric as

d — ev3ds + & 3 (dz+a)?, (2.4)

where the iglsz = g, (X)dx#dx”, the Kaluza-Klein one-form ia = a,dx# andg is the dilaton. In
a similar way the 5D vector fieldd' (x#,z) are decomposed as

Al(xH z) = Al (x*) +u'dz, (2.5)

whereu' are the axions. All the above fields do not dependzomserting these decompositions
into the 5D action we get the 4D lagrangian

1 1 12 1
Z4 = Rex1= S xdpAdp—GiaxdX AdX - Eef%Gu*clu' Adu — Ee"/g"’*,?’mﬁfz.&

1 e 1
- 3¢ 3Gy« F! AR = Z8acdAl A DA,

4
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where.# = daandF' = dA' —du' Aa are the field strength two-forms. Our purpose is to rewrite
this lagrangian in the form exhibiting the S-duality symmetFirst of all we consider the scalar
part of (2.6) written in the following form

2 ~ ~ ~ ~
€ Ll = % ((0¢)2+G|J6X'6XJ+e¢%G|J0u'duJ> = Yg(D)0D9PE, AB=1,...,6,

whered = d/dxH, e, is the Hodge dual to unityey = x1 = \/—gd*x and all index operations
refer to the metrig,,. The potentialsb* combine the six variablegX*, X2, ¢,u'} and realize the
map®”: xH € A, — DPA(XH) € .Mxq between the 4D Minkowskian space-time and the target
space with the metri#/ag(®). Replacing the dilatop and the modulX' by the new variables':

a' = @/v/3—InX!' enable us to simplifyZsy as follows

&1 Loal = %Z ((aa')2+e2“' (du')2> .

The structure of the scalar manifol#sy becomes more transparent in terms of three complex
potentials? = ul +ie ?":
1
—1 _ 4 112 1\2
€, .,%caj_zzydz] /(Im Z)~.

The lagrangian? = 3|dz?/(Im 2)2 invariant under the grouL(2,R) and the corresponding
target space metric is the Kéhler sp&t¢2, R)/SO(2). So in our case the isometry group. @

is G = (SL(2,R))? and the corresponding target spac€j$i = .Z«a = (SL(2,R)/S0(2))3 with
the metric

Gpp(P)dD AP = % ((d(p)2+G|JdX'dXJ +e3‘%G.Jdu'duJ> = %z |dZ [2/(Im Z)2.

As the second step, we reformulate the vector part of theuaggan (2.6) according with the
structure of the bosonic lagrangiandf= 2 supergravity coupled to vector multiplets (for a review
see the Ref.[24]). We express it in terms of the field two-fofh and.Z obeying to the Bianchi
identitiesdF' = 0 andd.Z = 0 respectively. To extract the two-fornfs one has to combine
the exterior derivatived(u'a) in F' = dA' —du' Aa. As result we havé' = F' + u.%, where
F' = dA=d(A —ua). Inserting the two-form&' anddA' expressed vi& and.Z into (2.6) and
integrating by parts the term&x F' A duuk A aanddjxdu' wuf A an .Z we will obtain for the
vector part of the 4D lagrangian

1 e o _
Lo = E[e*ﬁfﬂ*yijLe G, (*F'AFJ+2*9u“ /\FJ]+u'uJ*ff/\ff> (2.7)

~ ~ 1
+ &k (F' AFIUC R WU A 7 + éu' uJuK,?/\?)].
Denote the field strength and its Hodge dualZas= 3.%,,dx! Adx andxZ,, = 3.7 %Feqp,y,
whereg,g,,, is the totally antisymmetric Levi-Civita tensor Wi(lorg)l/ 2. Assuming thatdx* A
dx¥ Adx? AdxP = —gHvaPe, we find
1

1 1 1
*9/\9:59#\,9“‘/84259264’ 9/\9:—591_1\;*9“‘)64:—59*964.
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Note that in the 4D Lorentzian signature space the doublgyklddal isx = —1. We then combine

the field tensorﬁ'w and.Z,, into the 4-column%,,, = (;‘“’ ) and rewrite (2.7) in the matrix

uv

form adopted in [25, 26]:

1

A 1.
'@gp(”r@ap - EV*%(}B),

where the symmetric 4 4 matricesil and¥ are given by

_2 _@
N e 3Gy e ViGyu’ N AU 2ok
H=1 _o , =v2(, IK o283 |

e V3G W’ Gyu'W’ + e V30 S0kUUt  2utucu
This lagrangian yields the field equations fat ;: Oa(18%P — \/%\7*93“3) = 0. Introducing
the dual field strengtti, z as«#%PF = [1.89F — %O*%“B we see that the above equations are
the Bianchi identities for7,g. Therefore the lagrangiafe takes the form manifestly S-duality
symmetric:

1 1
€ Lot = Z@gﬁ*%aﬁ = émTzl*D, 0= (‘%“B>, = (0 1).

It can be checked that relation betwdémandxL is given by

O=QP«0,

whereQ = 01 ; is the 8x 8 symplectic metric ané is the 8x 8 matrix depending on the

potentials of the scalar manifold#/s
4 pg4+vp=t vp—t
P= 1e [ENE

The matrixP provides the representatignof the coset eIemen’t(ﬁJA), namelyy: me #sa —
y(1) = P. We then have

GrpdPAdDE = —1—16Tr(d|5dI3‘1) = —%Tr(dudu‘1 —dvu~tdvut).

Consider diffeomorphisn*i)A — ®*, which leave invariant the target space metric. It corre-
sponds to the action of some elemgriielonging to the isometry group of the target spg@é‘.
In terms of the matrix representatignthis means that the coset mati= ;P transforms as
R— R = y(§)Ry(§1). Inserting the expressiori] = —QPL into the Zens and keeping in mind
thatZ;Q = —Q3>1 we will obtain for the tensor part of the lagrangian:

1 ~
€ Liect = éDTQRD.
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If we now demand this lagrangian to be invariant under thadf y(§), we get the restrictions
for the elemeng € G acting on the column a8 — y(9)d. Performing the transformation we have

1 S
Liet = Lyea = g0 V(Q) QVORVG HY(@)D.

Thus the conditions foy(g) arey(g) = y(§) andy(§)" Qy(§) = Q. This relation means that there
is the symplectic embedding of the isometry group into thepsgctic groupG — Sp(8,R) [27].

In other words,y(§) provides the symplectic representationgoivhich rotates the fieldsl. Note
the full 4D lagrangian can be written in the following form

el L =R+ 1—16Tr(a|iafe-1) — %DTQQD.

Thus the S-duality group for the four-dimensional reductiétheU (1)2 supergravity isSL(2, R)3,
reducing toSL(2,R) in the minimal case.

3. 3D sigma-mode

Consider now further reduction to three dimensions. It isveaient to restart from 11D
supergravity. An overall assumption for the 11D manifoldl e .#11 = T® x I x .#3 where
¥ is T2 if both these Killing vectors are asymptotically spacejilor T1 x R if one of them is
asymptotically time-like. The full set of 11D coordinate$, N = 1,...,11 is thus split inta? €
TS, a=1,...,6,X € #3,i=1,...,3andz’ € I, p=7,8. The decomposition of the 5D metric is
given by

ds2 = Apq(dZ° +aP) (dZA 4 a%) — kT~ hyjdx dx, (3.1)

where all metric functions are independent8randz®. The 5D metric components are parame-

terized by the KK one-formaP = aPdx, the three-dimensional metrig; of .#3 and the scalars
o1, 92, X, which are arranged in the following>22 matrix

_2 1 g
Ao (X X2+K§ﬁ¢1—¢z>’ deth = —7 = ke "%,

wherek = + is responsible for the signature: = 1 for space-likeZ , andk = —1 for time-like
Z. The ansatz (2.2) leads to the five-dimensional action (/83 5DU (1) gauge field#\' reduce
to the 3D one-formsA\'(x') and the six axions collectively denoted as the 2D-covarimtblet
Yp = (U, V') with the indexp relative to the metrid

A(X,Z', ) = A (X)+ ghdz’ = A (X) + u'dZ" +V'dZ.

To obtain the three-dimensional sigma-model one has tdz#utdie electro-magnetic (EM)
one-formsA! and the KK one-formsP to scalars, which will be denoted as and wy,. The
dualisation equations read:

dA' = dyynal+ 171GV« Gy, (3.2)
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where the one-form&, andV, are given by
1
G =du + E&Jdeéququ,
| 1 J K0
Vp = d(/)p— laup(dIJI + ééJKdWQQUr € >

In the component form the Egs.(3.2) relad:
Apgd'all = 1 ik Oep — Y (akM + }&JKakQUrJl’UtKErt> ;
2tv/h P 6

oo . 1 .
liadll — ali il gy ijkeld
SAT=ER et o RO <a"”3+2

1

—5JKL5rll/gll/c'}5pq> - (3.3)
Substituting the metricl% in the form (3.1) into the 5D action (2.3) and performing dsegtion
via Egs.(3.2) one derive the 3D gravity coupled sigma-ntodel

IPAIDB N\ o
I3 — 16716/\/ <R3—£4Agal ajh)dx, (3.4)

where the Ricci scaldRs is build using the 3-dimensional metitig. The set of potentialé ®* =
(@, ' i, X, wp), AB=1,...,16 realizes the harmonic map’: X € .#3 — DPAX) € M
between the 3D space-time/3 and the target spaceZsy With the metricag(®¢). The target
space line elememti?2 = ¥\gdP*dDd® has the form

1

di2 = %Gu(dX'dXJ +dyg' A Ldy?) — ér-le'JG.GJ + %Tr (A~tdAA~1dA)

+ L2grz_lraymyony (3.5)
4 2

It is invariant under the action of the 28-parametric isayneroup SO(4,4). The target space
manifold.Zsa is isomorphic to the cose# = SO(4,4) /H, where the isotropy groug is SO(4) x
SO(4) for k =1 andSO(2,2) x SO(2,2) for k = —1. That is there is an isomorphic map

DA — m(PA) € .. Moreover ifg € SO(4,4) is some constant element of the isometry group then
the following transformations

m— 71 =gom ds3— ds3

leave invariant the action (3.4).
As a convenient representative of the cas@b”) € .# one can choose the matrix represen-
tationy: m— y(mm) = ¥, where¥ is the upper triangular matrix. We assume ttfatransforms

Lthe antisymmetrization is assumed with 1/2.
2The setp = (g1, @, @3, @) comprises four scalars related to previously introduged,, x andX' via

— i _ 3 1 _ 1 3 1
(pl N \/7( In(x )+\/§¢1+¢2) (m \fz (In(x ) \/§¢1+¢2)7
1 X!
%= H‘“““ﬁ‘“) w="5"x
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under the global action of the symmetry gra8p(4,4) by the right multiplication and under the
local action of the isotropy groud by the left multiplication:¥” — ¥’ = h(®)¥ g, whereg andh
belong to the matrix representatigrof SO(4,4) andH respectively. Given this representative, one
can construct thél —invariant matrix (which we denote the same symb#las the coset space)

M=VTKY,

whereK is an involution matrix invariant undét: h(®)"Kh(®) = K, and dependent on the coset
signature parameter. Then the transformation of the matri# underSO(4,4) will be

M— M =g . (3.6)
The target space metric (3.5) in terms of the mat#xwill read
diz = —%Tr(d///d//fl). (3.7)

Choosing suitable & 8 matrix representatiop of the isometry groui80(4,4) we construct (see
[12] for details ) the matrix representation of the cosgtin terms of the 4x 4 block matrices
P =27 and2 = — 273 as follows

e S P2
N2 2+ 9722 )’
where the block matrices are given explicitly in the Appendi

3.1 Matrix dualisation

As we have discussed, the dualisation equations (3.3) nesept difficulties in applications
of the solution generating technique. We can improve theasdn performing dualisation in the
matrix form. Introducing the matrix-valued current onerfio_#

S = il =.ad.at

we can rewrite the 3-dimensional sigma-model action (f14hé following form

I3 = T;II'G?)/ <R3*1—%TI’(/ /\*/)) .

In this expression the Hodge dual is assumed with respect to the 3-dimensional méeiiic
Variation of this action with respect t¢Z shows that the two-form_¢ is closed:

dx 7 =0. (3.8)
Variation with respect to the metric leads to three-dimemai Einstein equations:

(Ra)ij = %Tr(/i/j)- (3.9)

3T denotes transposition with respect to the minor diagonal
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The first equation (3.8) means that the matrix-valued twmgs_# is locally exact, i.e., it can be
presented as the exterior derivative of some matrix-vatredform.4”, that is

*x = MxdHt=dN. (3.10)

The matrix.4" is defined up to adding an arbitrary matrix-valued closedfon@, which can be

determined by choosing suitable asymptotic conditionswNomparing the matrix dualisation
equation (3.10) with the initial dualisation equations3j3wve find the following purely algebraic
relations between certain components of the matriX).,, a,b=1,...,8 are and the previous
variablesaP andA', namely

a'= (M) &= (M),
Al = gaP + (AN )15, A*=gaP+ (AN )1a, A’ =3aP — (A )2s. (3.11)

Thus, if one manages to find the matrix’, the metric and matter fields can be extracted alge-
braically.
For the following it is important that the definition (3.10)cathe transformation law for the
matrix .2 (3.6) under the global transformatiogs SO(4,4) imply the following transformation
of the matrix.4":
N =N =g (")

Using (3.11 one can read off the metric components and pakentithout explicitly solving the
differential dualisation equations.

4. Solution generating technique

The sigma-model presented in the previous sections gigedaigenerating technique which
allows to construct new solutions from the known ones. Letrttetrich;; and the set of potentials
®” combined in the coset matrix/ correspond to the metric and the three-form of some 11D seed
solution. One has to extract part of the target space pateritom the seed solution algebraically
and solve the differential dualisation equations (3.2) nol fihe remaining potentials. Using the
action of the target space isometries one can then constnet solution of the sigma-model with
the same three-metrl; = hjj and the coset matrix

M =qg'. g (or.d'=gn#g"), geS0O(44).

Note that five target space variablgs @, @, @, x enter the eleven-dimensional metric alge-
braically, via the modulK', Apq:

dsfy = 3 X' ((d2)2+ (d2)2) + Apa(d2® +aP) (dZ+a%) + Ty X o, el = (12,34,56),
l,aa

while the KK vectorsaP in the T2 sector are related to the target space potenigiga dualisation.
Similarly, in the form-field sector,

Ag = (At + pdzP) AdZE A dZ + (A% + 3dZ°) AdZ A dZH+ (A% + YidZP) A dZ A dZP

10
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the six quantitiesp}) are the target space potentials, while the remaining omasét are related

to the potentialgy via dualisation. So the set of transformed potentid)s (X')" and (y;)’ can

be explicitly extracted from the coset matri#’. The remaining components of the transformed
metric (dsf;)’ and the 3-form(A3))’ which are parametrized as the KK one-fora)’ and the
EM fields (A') are determined by the dualisation equations (3.2). Theseveualisation via the
Egs. (3.3) may be very difficult technically. Fortunatelyistproblem can be reduced to a purely
algebraic one using the dualisation in the matrix form (Bd®)described in the previous section.
Taking into account that the matri¥” transforms as

N'=g" (@)t (or/'=grgt), geS044)

and using the relations (3.11) one can easily obtain theetbguantitiegaP)’ and(A')’.
We will denote the 28 generators of th&4,4) algebra as

T = (Hy,Ha,Ha, Hy, P Wy, Zyy, QFPXH),

with | =1,2,3, p=7,8. Their matrix representation can be found in the Appendike corre-
sponding one-parametric transformatians- €7, wherea is a transformation parameter, give
the set of the target space isometries.

4.1 Asymptotic conditions

An important question is how to identify the isometries weahé¢o use in order to construct
solutions with the desired properties. These are usuadlgceted with asymptotic conditions. In
this paper we consider asymptotic conditions correspanttirbD Kaluza-Klein black holes with
squashed horizons embedded into eleven dimensions whiaspond to the following asymptotic
manifold: T8 x R x Sy, WhereSy is a squashe&®. We will assume that target space potentials
have the following general asymptotic behavior

10 oA owy oy B
AN<0—1>+T’ OHNTa WBNr—27 Az =0, (4.1)

wheredA, dw; anddwy are constant. The asymptotic behavior with = dw; = dws = 0 cor-
respond to the trivia§' bundle over a 4D Minkowski space-time. The asymptotic cosatix for
this case is#s = K which is preserved under the isometries belonging to theoigp groupH of
the SO(4,4):
P+P' z+Z,, W-W,, XT+X~, Q'+0°7, o-q?8

For more general asymptotic behavior such as (4.1) one hevé¢he above transformations with
some constraints on the parameters.

To apply these isometries in the case of minimal 5D supeitgramne needs to find the relevant
embedding of th&,,) subgroup intd0(4,4). As was shown in [12], the following combinations
of the SO(4,4) generators realize the positive and negative root gensratG; ):

PEn S P Zin S Z W YWy, QFP XE
Thus the isometries
Pr+P, Z,+Z., W,—-W_, XT4+X", Q'+Q7 ®-q8

can be used to generate new KK solutions in the minimal 5Drgugeaty.
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5. Five-parametric squashed black hole

Our improved generating technique allows us to construettarged Rasheed solution from
the Kerr Black Hole. We define the coordinatés= x°, Z =t andx = (1,8, ¢). In this basis
the Kerr solution of the madslk and the angular momentudy = aMyx smeared into the fifth
dimension reads

azsint9  \2
S! d)+3

d%:(dxf’)z—(l—Z)(dtJr — :

dr? + pd6? + %sinz 6d¢?,

where oMt
p=r’+a’cofh, A=r>—2Mkr+a?, Z= pK.

The corresponding target space variables are:

1 0
Apg = T=1-Z7
P <02—1>’ ’

_ 2Mkacosf - g azsinto

T o (=0 =7

The above definitions of the target space potentials leduetéollowing blocks of the coset matrix
M

(L)7:0,

2M 0
0 0 =xF2= 0 =1 0 00
9_|00 0 0 | 0 00
oo o ol 1 0 010
00 0 © 0 001
One can easily obtain the dual matriK solving the Eq.(3.10) :
2Mg Acosf Zasir’ 6
— Tl 0 0000 Z8878 o.
0 ~Bpossh 0000 0 —ZETe
0 0 0000 O 0
e 0 0 0000 O 0 g
= 0 0 0000 O 0 -
0 0 0000 O 0
Za(r—2My)sir? 6 2M Acosf
g 0 . 000 0% 0
Za(r—2My)sir? 8 2Mk Acosf
0 2rESTC 0000 0 Akhossd

To obtain the charged dyon solution from the Kerr one we afipthe seed coset matriceg and
A the following sequence of global transformations

gl = eO((X++X7) — 92 f— 68(97—5-977) N g3 — ey(QS_Q*S) N g4 — e62|(Z| +Z,|)

with the constant parametecs 3,y,0. Here we assume that the matrice® and./" are trans-
formed undery = 9100304 as.#’ = g.#9" and. 4" = g+ g~* respectively. Then we demand
that 919,093 preserve th@(%) asymptotic behavior o&?o or, equivalently, theO(r—lz) asymptotic
behavior ofwg. This give the same relation between three parametgBsy as in [23]:

tan2y = tanha sinh.

12



Hidden symmetriesin 5D supergravities Dmitry V. Gal'tsov

This constraint ensures the asymptotic flathess and theedsé the NUT parameter in the four-
dimensional solution. Then extracting the target spacebi@s from.#’ and.4" , transformed
KK one-forms(aP)’ and the five-dimensional one-forAi one can write the metric and the 3-form
field of new solution:

it = 3 ((d2)2+ (d2)?)

a,a

p
A
Ky=S %S{(A+ B)dt — (SC + CE)dx® + [C(XB—WE) - s(wc+YA)} d(p} NAANdZ,

a,a

+ f(dt+Q’)2+%(dx5+Wd(p)2—D< dr2+pde2+rAZsin29dcp2>,

with
f AB ! dx® d 21 B
~C E 5 ~ WC+YA XB—WE ,
Qs_As3 3¢ Qo=—74 S+ 5

The functionsA, B,C,E, X,Y,W is given by

ZM,%C%(CO, —p) +2Mk (r(p— cacé) - aso,sﬁcf3 cose) —pp

A= , 5.1
p(p — 2Myr) 5
2ME (14 cap)(p—CaC3) +2Mk (asasﬁ(1+ C5€5)c0S0 —r(Ca Pp? — CaCh + p)) —pp
B = b) (5'2)
p(p — 2Myr)
2Mk (MKsa(cac[Z; — P) +rpsq — acqaSp cose)
E = N , (5.3)
- 2Mk cg(Mk sySg +apcosd)
C=- p — 2Mr ’ ®4)
ZMKCE{MK (asa sirf 9(p— cac[z;) — 2sgr cose) +55(r? + a%) cosb — asq pr sin 6}
_ . (55
o(p — 2Mxr) 5:9)
2Mkacg sir? G(MK (Ca —P) — rca)
X = — , (5.6)
p — 2Mkr
—2MK{MK (230, pr cos6 — asg sin’ 8(pcq + 1)) — sy pcosf(a? +r2) + asgr sin 6}
Y = . (5.7)
p — 2Mkr
where

p=,/c2 +s§s§, c, = coshx, s, = sinhx, ¢ = coshd, s=sinhd.

Our new solution contains five free parametils a, a, 3, and reduces to that of [22] & = 0.

13
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6. Asymptotic behavior

The functions (5.1)-(5.7) have the following asymptotitbi&eor at spatial infinity

2Mg C3cq 1 1
_ 1 pa - =
A=-1 p r O<r2>’
2MkCa(C — P?) 1 1
p r r

1 1
C = —2MKkCp(SuSpMk + pacosd) +o<r_3>,
1 1
E = 2Mcsap; +0(53).
. 1 1
X = 2Mkac,Cg Sin? 9F+O(r_2)’

. 1 1
Y = 2Mysy pcosf — 2Masg sir? GF +O<r—2>,

2Mk sgCs cosO ) 1 1
W = KB—B—ZMKachastQFJrO( ),

r2
These decompositions lead to the asymptotical expressitite dive-dimensional metric and the
electro-magnetic one-form':

2Mk sz Cz cosO
1 KopLp

dg2 = —dt?+ (dx® d)? +dr?+r?(d6? + sir? 8d¢?),

g = S ANdAAdZE,

a,a

o B o), < P o)

asin? B(ssz — cCyCq) + 2Mk Sy 0SB (cCpSg + S3p2C
(Ssg — CCaCp) K Sa (ccasp pa)}+o< >’

1
A, = ZMKCS{ —SpSy CO0SO + - 2

Then we define the Komar mass and angular momenta as

1 G;B
M= gz | OEopk”
l a’B
Yo= g0 | aptly
1 a;B
e = _ﬁ/dzaﬁf(xs)7

wherefg), E(U(’p), E(‘j@ are the Killing vector fields ) = 5(;1)@0, =&, &(p) = g, &) = Gy, Which
normalized aé(% =1, E(Z@ =1, E(2X5) =1 atinfinity. The integrals are taken over the squasted
at spatial infinityr — o and the surface elementd&, = r?sin(8)do Ad@A dx®. Here we assume
thatx® € S has the periodicity #Rs. The computations of the Komar integrals with respect the
5-dimensional metric

1

_ N2
ds2 = f(dt+ Q') + D

(dx°+Wdg@)2—D (golr2 + pd6?+ % Sir? 6d(p2>

14
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give the following results:

M = 8Rs(c? + s°)Mk pCq

4
J(p = —§R5MKa(CaCBC3— SB83)7
Js = —4RsM psy €3

The conserved electric char@g of the new solution is

1 , 1
— = [dy g(FF4 __— _
Qe 4nG5/ aB( +\/§

(]
\/__ggaﬁv nA/yFér;)?

whereF’ = dA’. One finds that g
m
Qe= G—SRSMKSCCG p

7. Conclusions

We have presented a new formulation of solution generagogrtique for the 5D minimal
and U (1)® supergravities based on the 3D sigma-model witrbgt, 4) isometry group. Starting
from any seed solution possessing two commuting Killingeefields and using transformations
of the target space isometry group one can construct new@muwvith the same three-dimensional
metric. The solution generation procedure consists insplhe dualisation equations for the seed
solution to express it in the sigma-model variables, apghomeSO(4,4) transformations to get
new sigma-model potential, and finally to pass back to theimaihd field variable. Usually the
last steps also involves solving the dualisation equatibatswe suggest here the dualisation in the
matrix form with an independent transformation of the dualables. This allows to avoid solving
differential equations for the backward dualisation, aepig this step by an algebraic procedure.
As an application we have obtained the five-parametric Kakiein black hole of the minimal
5D supergravity. Our generating transformations germrdhiose of the vacuum 5D gravity to the
presence of vector fields and open a way to develop the ingeedéering technique for this more
general case.
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A. 8 x 8 matrix representation

We choose the following 8 8 matrix representation of the so(4,4) algebra

E— (é_'}) (A1)
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whereA, B, C are the 4x 4 matrices A, B being antisymmetricB = —BT, C = —CT, and the
symbol'f in AT means transposition with respect to the minor diagonal. dihgonal matricesi
are given by the followingA—type matrices (witlBB = 0 =C):

V2000 0000 0000 000 O
0 000 0v200 0000 000 O
Ay oooo0|l”™ loooo|l' ™™ |oov2oO A= 1 900 0
0 000 0000 0000 0002

Twelve generators corresponding to the positive roots mendyy the upper-triangular matrices
Ex, k=1,...,12. From these the generators labeledkby 2,4,6,7,9,12 are of puréd-type (with
B=0=C):

0001 000 0 0100
0000 000 0 0000
A= 10000l ™ |ooo-1| " |oo000l
0000 000 O 0000
000 O 00-10 0000
000-1 0000 00-10
A& =1000 0 Aes=1000 0| ™ |000 0
000 O 0000 0000

while the other six are of pur type (withA=0="C):

100 0 0000 0 000
000 0 0-100 0 000
Be:=1 0000 | B= |00 10| B&=| _1000]|
000-1 0000 0100
0 000 010 0 001 0
5 _|-1000 5 _|0000 5 _|o000-1
B~ oooo0|” "B |[o000-1|" ™ |000 0
0010 000 O 000 O

The correspondence with the previously introduced generid as followsl(=1,2,3, p=7,8):
P'~E, W—E, Z<E, Q°<Eys X' <En
In this representation, the matrices corresponding to ¢dgative roots,
P'—E, W, <E (43, Zi—oE (4 QP—E (3, X <E.
are transposed with respect to the positive roots matrices:

Ex=(E)".

16



Hidden symmetriesin 5D supergravities Dmitry V. Gal'tsov

The following normalization conditions are assumed:
Tr(Hi,Hj) =44, i,j=1...4, Tr(Ex,E_x) = 2,
and the involution matriX is chosen as
K =diag(k,k,1,1,1,1,K,K).

The generators of the isotropy subgroup are selected bygtgtienh(®)TKh(®) = K. They are
given by the following linear combinations of the generator

P kP, z—kZ,, W-W,, XT—kX", Q' —-kQ ' Q®—Q°8

B. Matrix representation of coset .#

(2 29
22 74+9722)

where the 4« 4 blocks#? and 2 are

32 \32 31 2 2u3v2uLBul L2 12 o3 201 1Byl
uv22v3u 0, — ViU 2ug2u+v3uu —UzlJz, :)_|_\/3uv2 Z\F'gVJruvvz_Vzuzo
12t
—\2 _u3+w 0
2
—u 0

M1+

WIAW,  WTAG —~ -
P = ’ , =z H.
( OTAY, OTAD + V2™ ) (&)

HereW andA are the 3x 3 matrices

1ud -3 e2n 0 0
w=(01 0 |, A=k| 0 e?2» —xev2e
00 1 0 _Xe\@(l’z eﬁ@x2+f<e\@<"3

and® is the 3-column
po + 3 (ulv — udvh)
O = —vt
—ut
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