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1. Introduction

In even dimensions trace anomalies give important information about conformal field the-

ories . Coupling the theory to an external space time metric the information about all the

energy momentum tensor correlators is encoded in the generating functional. The confor-

mal invariance of the theory ,i.e. the Ward identities following from the tracelessness of the

energy momentum tensor is equivalent to the requirement that the generating functional

is invariant under a local rescaling of the metric(Weyl invariance ).

The trace anomalies are a violation of this requirement by local functionals which cannot

be removed by the variation of a local counterterm . The possible terms which can appear

were classified and belong to two classes:

a)type A given by the Euler characteristic in the respective , even dimension

b)type B whose number increases with the dimension and which are local Weyl invariant

functionals

The above , ”bulk” trace anomalies were generalized to other (surface) observables , in

[1] .These new , Graham-Witten anomalies exist whenever the embedded submanifold has

even dimension.

The calculation of trace anomalies in an interacting conformal theory is a nontrivial task

. In superconformal theories the calculation is made easier by the relation of the trace

anomalies to various chiral anomalies.

With the advent of holography [2] a new method for the calculation of trace anomalies

became available through a classical calculation in the dual (super)gravity theory . In [3]

such a calculation was performed giving impressive agreement with the known values of the

anomalies in the conformal field theory . The calculation involved a systematic expansion

of the solution of the equation of motion .

In the present contribution , based on [4] we review a new method to calculate trace

anomalies in a holographic setup . The calculation does not require the solution of the

equations of motion. The anomaly is given by a boundary term . This allows the calculation

of the anomalies for arbitrary actions . In particular we obtain a universal formula for the

type A anomaly for a general gravitational action in an arbitrary even dimension . The

method is generalized to include also Graham-Witten anomalies.

The contribution is organized as follows:

-in Section 2 we describe the new method and apply it to the calculation of bulk trace

anomalies and Graham-Witten anomalies
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-in Section 3 we discuss the possible back reaction of the terms producing the Graham-

Witten anomalies on the calculation of bulk trace anomalies

-in Section 4 we give a new proof for the universal formula describing the type A anomaly

for arbitrary actions

2. Holographic anomalies

In this section we present a general scheme to compute holographic conformal anomalies.

It is very much like the computation of the SU(4) R-current anomaly presented in [5]. The

anomaly is the boundary term generated by a suitably chosen local symmetry transforma-

tion. In the case of the R-current this is a SU(4) gauge transformation and the boundary

term, which is the R-current anomaly of the CFT on the boundary (N = 4 SYM) is due

to the SU(4) Chern-Simons term present in the 5d gauged supergravity that arises when

one compactifies type IIB string theory on S5. For the conformal anomalies the appropri-

ate transformations are the so-called PBH-transformations, a subgroup of five dimensional

diffeomorphisms introduced in [6] and reviewed in the following. This treatment of the

conformal anomalies does not require the solution of the equations of motion and it does

not depend on the introduction of a cutoff. This gives us confidence on the generality of

their structure when we compare it with the results in the field theory.

In the first part of this section we deal with those anomalies origination from the bulk

gravitational action. In the second part we extend the discussion to the trace anomalies

originating from the Dirac-Nambu-Goto (”DNG” in the following) piece of the action

(“Graham-Witten anomalies”).

2.1. Anomalies from the bulk

We start with trace anomalies in the bulk. Besides giving a general illustration of the new

way to calculate trace anomalies the explicit results will be used in the following for an

alternative holographic representation of the anomalous pieces in the EE.

Consider a generic gravitational bulk action

S =

∫

M

√
Gf(R) dd+1X (2.1)

where f is an arbitrary scalar function of the curvature and its derivatives. We require

that (2.1) admits AdSd+1 as a solution to the equations of motion: this imposes a mild

inequality on the coefficients in f(R).

2



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
2
0

We choose coordinates Xµ = (xi, ρ) such that ρ = 0 is the boundary of AdSd+1 where the

dual CFT lives. It is coupled to a metric (source for its energy momentum tensor) g(0)

ij (x).

For the bulk metric we choose the Fefferman-Graham (FG) gauge [7][3]

ds2 = Gµν dXµdXν =

(

dρ

2ρ

)2

+
1

ρ
gij(x, ρ)dxidxj (2.2)

with gij(x, 0) = g(0)

ij (x). For g(0)

ij = ηij (2.2) is the metric of AdSd+1, whose curvature

radius we have set to one.

PBH (Penrose-Brown-Henneaux) transformations are those diffeomorphisms ξµ which pre-

serve the FG-gauge [6], i.e. for which LξGρρ = LξGρi = 0. The solution is parametrized

by an arbitrary function σ(x):1

ξρ = −2ρσ(x) , ξi = ai(x, ρ) =
1

2

∫ ρ

0

dρ′gij(x, ρ′)∂jσ(x) (2.3)

In particular, δσg(0)

ij = 2σg(0)

ij , i.e. σ(x) is the parameter of Weyl rescalings of the boundary

metric.

The group property for PBH transformations can be shown to be

ξν
1∂νξµ

2 − ξν
2∂νξµ

1 + δ2ξ
µ
1 − δ1ξ

µ
2 = 0 (2.4)

The last two terms are due to the dependence of the transformation parameters on gij(x, ρ).

The essential property of the PBH transformations is that on the boundary they coincide

with the action of the Weyl group. Therefore in holography the Weyl group becomes

embedded in the d + 1 dimensional diffeomorphisms and the study of Weyl anomalies is

reduced to an analysis of how diffeomorphisms act.

Under a bulk diffeomorphism the action (2.1) is invariant up to a boundary term

δξ(
√

Gf) = ∂µ(
√

Gξµf) (2.5)

δξS =

∫

∂M

ddx
√

Gf(R) ξρ|ρ=0 = −2

∫

∂M

ddx
√

Gf(R) ρ σ|ρ=0 (2.6)

where in the second line we have restricted the diffeomorphism to a PBH transformation.

The finite piece of this boundary term is the holographic Weyl anomaly.

1 The choice of lower limit in the ρ′ integral means that we do not consider diffeomorphisms of the

boundary. They are of no interest here.
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A comment is in order here: we consider passive diffeomorphism transformations which

act on the fields rather than the coordinates. The reason for doing is that we want to keep

the boundary fixed.

Following [7](see also [8]) we expand the metric as

gij(x, ρ) =
∞
∑

n=0

(n)

g ij(x)ρn + . . . (2.7)

The . . . denote logarithmic terms (∼ log ρ) which are present for even d. They do not play

a role in our analysis. The integrand in (2.1) has likewise an expansion of the form [6]

√
Gf(R) =

√
g(0)ρ−

d
2−1b(x, ρ) =

√
g(0)ρ−

d
2−1

∞
∑

n=0

bn(x)ρn (2.8)

As was shown in [6], b and thus each bn, satisfies the Wess-Zumino consistency condition

∫

ddx
√

g(0)(σ1δσ2
− σ2δσ1

)b = 0 (2.9)

A simple way to see this is as follows (cf. the Appendix). For O =
√

Gf(R) one derives

δσ1
O = ∂µ(ξµ

1O) and [δσ2
, δσ1

]O = 0 by virtue of the group property (2.4).

On-shell bn is a local, covariant expression constructed from g(0)

ij . For d = 2n it is the

coefficient of the boundary term at O(ρ−1) and represents the Weyl anomaly of the dual

2n-dimensional CFT. The bulk gravitational action thus plays the same role for the Weyl

anomaly of the CFT as does the CS term for the R-current anomaly.

For general d = 2n, the on-shell bn depends also on some of the derivatives of gij at ρ = 0

and not only on the boundary value g(0)

ij . These higher derivatives need some information

contained in the equation of motion. However, for d = 4, b2 can be computed without

the need to solve the equations of motion. As we will show momentarily, in d = 4,

besides g(0) only the coefficient g(1) of the FG expansion of the bulk metric appears. This

second coefficient is universal because it is uniquely determined by its behavior under PBH

transformations and locality [6]:

(1)

g ij =
1

(d − 2)

(

Rij −
1

2(d − 1)
gijR

)

(2.10)

where R is the curvature of g(0) and gij ≡ g(0)

ij . The universality of g(1) will be spoiled if

we take back reaction into account, as we will do in section 5.
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On dimensional grounds bn can at most be linear in g(n), as both carry length-dimension

−2n (ρ ∼ length2). By assumption, f(R) is such that Anti-de-Sitter space is a solution of

the equations of motion. Expand the action around this solution. In this expansion the

term linear in the fluctuations around the AdS-metric can only be a total derivative (or

vanish altogether). Consider the terms ∇µ∇νδGµν and trδG. For fluctuations δGij =

ρn−1g(n)

ij the possibly dangerous terms, i.e. those which might contribute to bn, are of the

type ρntr g(n). It is straightforward to show that their coefficient is zero for d = 2n. Higher

derivative terms in the variation of the action will involve coefficients g(m) for m < n. We

stress that the above argument showing that in d = 2n g(n) does not appear in the bn term

in the expansion of the action does not prevent the participation of g(n) in the equation of

motion in the usual way [3] of calculating the anomalies.

To summarize, to find the Weyl anomaly of the d = 2n-dimensional dual CFT all we have

to do is to extract the coefficient of 1/ρ is the expansion of the gravitational action. In

d = 4 this only involves g(0) and g(1) and is thus completely fixed. On general grounds this

can always be written as a linear combination a E4 − c C2 + e R where C2 is the square

of the Weyl tensor, E4 the Euler density (i.e.
∫

M

√
gE4 ∝ χ(M)). In the Appendix we

will rederive the general expression for a, already found, by different means, in [6].

2.2. Graham-Witten anomalies

In this subsection we will study the trace anomalies for submanifolds (“Graham-Witten”

anomalies) . We will follow the method used in the previous subsection for bulk anomalies

which does not depend on the equations of motion and does not need a cutoff. This

will enable us to discuss the general structure of the Graham-Witten anomalies and the

anomalies produced by more general submanifold actions having the same symmetries as

DNG. For the DNG action our method reproduces the result of [1].

We start with a classification of the possible Graham-Witten anomalies for the case when

the submanifold has dimension 2 embedded in a manifold of dimension d.

Candidates for the Graham-Witten anomaly are solutions to the Wess-Zumino consistency

condition satisfying the following conditions: they should be local expressions constructed

from the second fundamental form and from curvatures, linear in the Weyl parameter

σ; they should have two derivatives (appropriate for the two dimensional case considered

here); they should be cohomologically non-trivial. Among those we distinguish between

type A which satisfy the WZ condition non-trivially and type B which satisfy them trivially

having expressions which are Weyl invariant.
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To find the candidates for the anomaly, we will need, besides well-known expressions

for the Weyl-transformation of the curvature tensors, the transformation of the second

fundamental form and of its trace:

δσKi
ab = −habP

ij∂jσ , δσKi ≡ δσ(habKi
ab) = −2σKi − k P ij∂jσ (2.11)

where P ij = gij−hij = gij−hab∂aX i∂bX
j projects to the normal space of the hypersurface.

It is then straightforward to show that the following list exhausts all possible Weyl invariant

expressions:

√
hhachbdCabcd,

√
h(tr(KiKj) − 1

2
KiKj)gij,

√
h(KiKjgij − 4hab

(1)

g ab + 2R(2))

(2.12)

where R(2) is the curvature scalar of the induced metric, Cabcd the pull-back of the bulk

Weyl tensor and
(1)

g ab = ∂a

(0)

X
i∂b

(0)

X
j

(1)

g ij is the pull-back of (2.10). However, with the help

of the Gauss-Codazzi equation one shows that

hachbdCabcd = R(2) − 2hab
(1)

g ab + 1
2KiKjgij − (tr(KiKj) − 1

2KiKj)gij (2.13)

i.e. the above Weyl invariant expressions are not all independent. We will choose the first

two as a basis.

Candidates for the type A anomaly are

√
hR(2)σ,

√
hKi∂iσ,

√
h σ (2.14)

where these expressions are restricted to the submanifold. The first is the well-known trace

anomaly in d = 2. The second one, on the other hand, is trivial as it can be written as the

Weyl variation of a local term:

δσ(KiKjgij) = −4Ki∂iσ (2.15)

where one uses (2.11) and Kih
ij = 0. The third one is again trivial being the variation of

R the scalar bulk curvature restricted to the submanifold.

We thus arrive at the following basis of GW anomalies when the submanifold is two

dimensional:

type A:
√

hR(2)σ

type B:
√

hhachbdCabcd σ,
√

hgij(tr(K
iKj) − 1

2KiKj) σ
(2.16)
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In terms of this basis the anomaly found by Graham and Witten, who considered the case

where the hypersurface degrees of freedom in the CFT have their holographic description

in terms of the DNG action, is

AGW =
1

4

∫

∂Σ

d2x
√

h
(

hachbdCabcd − gij(tr(K
iKj) − 1

2KiKj) − R(2)
)

σ (2.17)

We proceed now to an analysis of the Graham-Witten anomalies in a holographic setup.

We will leave the dimensions of space-time d and of the submanifold k general and at the

end of the discussion we will go back to the specific k = 2 case.

In the holographic realization we have to consider a (k + 1)-dimensional submanifold Σ

embedded into the (d + 1)-dimensional bulk M such that it ends on a k-dimensional

submanifold ∂Σ on the d-dimensional boundary. Denote, as before, the bulk coordinates

by Xµ = (xi, ρ) and the world-volume coordinates by τα = (xa, τ) with i = 1, . . . , d and

a = 1, . . . , k. The embedding is Xµ : Σ 7→ M , i.e. Xµ = Xµ(τα).

We assume that the action contains in addition to the usual bulk component (2.1) another

component defined on the k +1 submanifold. The additional piece is invariant both under

usual bulk diffeomorphisms and under reparametrizations of the world volume.

We want first to generalize the PBH transformations (2.3) to this new situation where we

have two linked gauge invariances.

We first fix the gauge. For the bulk we go to FG gauge (2.2) as before. The reparametriza-

tions of Σ are fixed by imposing

τ = ρ and haτ = 0 (2.18)

Under a reparametrization of Σ, parametrized by ξ̃α, Xµ transforms as a scalar, i.e.

δξ̃X
µ = ξ̃α∂αXµ. In particular δξ̃ρ = ξ̃α∂αρ = ξ̃τ = 0 after fixing the τ = ρ gauge.

Also, if we require that δξ̃haτ = 0, we find that ξ̃a must be independent of τ . This means

that all world-volume reparametrizations of Σ are fixed except the ones acting on ∂Σ.

We perform now a target space PBH transformations δρ = −2ρσ, δxi = ai (cf. (2.3)). To

stay in the τ = ρ gauge we must make a compensating world-volume diffeomorphism

ξ̃τ = −2τσ (2.19)

The resulting change of the induced metric must be compensated in order to keep haτ = 0:

δhaτ = ∂aξ̃τhττ + ∂τ ξ̃bhab = 0 (2.20)
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With ξ̃τ = −2τσ this can be integrated to

ξ̃a = 2

∫ τ

0

dτ ′ τ ′hττhab∂bσ (2.21)

where all functions in the integrand depend on τ ′ (through X i(xa, τ)). Here

hττ = ∂τXµ∂τXνGµν =
1

4τ2
+

1

τ
∂τX i∂τXjgij(X, τ) (2.22)

Expand gij in powers of ρ (cf. (2.7)) and X i in powers of τ (with τ = ρ)

X i(τ, xa) =
(0)

X
i(xa) + τ

(1)

X
i(xa) + τ2

(2)

X
i(xa) + . . . (2.23)

With the definition

hab =
1

ρ
∂aX i∂bX

jgij(X) =
1

ρ
∂a

(0)

X
i ∂b

(0)

X
j

(0)

g ij(
(0)

X) + O(1) ≡ 1

ρ

(0)

hab(X) + O(1) (2.24)

we obtain from (2.21)

ξ̃a =
1

2
τ

(0)

h
ab∂bσ + O(τ2) (2.25)

We can now determine how X i changes under PBH. It transforms as

δX i = ξ̃α∂αX i − ai (2.26)

with ai from (2.3). This implies

δ
(0)

X
i = 0

δ
(1)

X
i = −2σ

(1)

X
i +

1

2

(0)

h
ab∂a

(0)

X
i ∂bσ − 1

2

(0)

g ij∂iσ
(2.27)

which is solved by
(1)

X
i =

1

2k
Ki (2.28)

where

Ki =
(0)

h
abKi

ab =
(0)

h
ab

(

∂a∂b

(0)

X
i−

(0)

Γ
c
ab∂c

(0)

X
i+

(0)

Γ
i
jk∂a

(0)

X
j∂b

(0)

X
k
)

(2.29)

is the trace of the second fundamental form, i.e. the extrinsic curvature, of the embedded

submanifold ∂Σ.
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We remark that the universality of
(1)

X
i is analogous to the universality of g(1), c.f. (2.10).

The higher X(n) , just like the higher g(n), are not universal, the reason being that their

behavior under PBH transformations admits homogeneously transforming terms 2.

We succeeded therefore to put also this more general situation, with the action having

two components, into a framework similar to the one we had for the bulk action alone.

The action of the Weyl transformations on the boundary is embedded into bulk diffeo-

morphisms and world volume reparametrizations (2.19), (2.21). Moreover, besides the g(1)

component of the bulk metric also the X (1) component of the embedding have a universal

form determined by the PBH transformations.

Using these results we are now prepared to analyze the Graham-Witten anomalies, i.e. the

transformation properties of the additional piece of the action when the metric g(0) is Weyl

transformed.

Following [1] we consider the case where the dynamics of the submanifold is governed by

the DNG action:

S =

∫

Σ

√
h (2.30)

The generalization to arbitrary world-volume actions is straightforward. A particular case

will be considered at the end of this section. The DNG action of Σ is invariant under

passive world-volume diffeomorphisms up to a boundary term. The finite part of this

boundary term (at τ = 0) is the Graham-Witten anomaly

A =

∫

∂Σ

√
deth ξ̃τ |finite (2.31)

Given that the τ -expansion of X(1) is universal only up to the first non-trivial order, we

will be able to compute the anomaly, without further input from the equations of motion,

only for k = 2. This is also the relevant dimension for the discussion of the EE in a four

dimensional CFT.

We now evaluate (2.31). We need

ξ̃τ = −2τσ(X) = −2τσ(
(0)

X) − 2τ2∂iσ(
(0)

X)
(1)

X
i + O(τ3) (2.32)

2 For g
(2)

ij this is e.g. g
(0)

ij C2 and for X(1) any one of the terms in (2.12) (without the
√

h factor),

multiplied by X(0).
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and det(h) = hττ det(hab) with

hττ =
1

4τ2
+

1

τ

(1)

X
i

(1)

X
j

(0)

g ij + . . . =
1

4τ2
(1 + 4τ

(1)

X
i

(1)

X
j

(0)

g ij) + . . .

det hab =
1

τk
det(

(0)

hab)(1 + τ
(0)

h
ab

(1)

hab) + . . .

(2.33)

where

(1)

hab = ∂a

(1)

X
i ∂b

(0)

X
j

(0)

g ij + ∂a

(0)

X
i ∂b

(1)

X
j

(0)

g ij + ∂a

(0)

X
i ∂b

(0)

X
j

(1)

g ij + ∂a

(0)

X
i∂b

(0)

X
j∂k

(0)

g ij

(1)

X
k

=
(1)

g ab −
1

k
KiKj

ab

(0)

g ij

(2.34)

With the help of these expressions we finally find, for k = 2,

AGW =
1

8

∫

∂Σ

d2x
√

det h
(

(

gijK
iKj − 4hab

(1)

g ab

)

σ − 2Ki∂iσ
)

(2.35)

where h and g now denote the boundary metrics. Eq.(2.35) is in agreement with [1]. As

remarked above, the last term is cohomologically trivial. The rest can be written in terms

of the basis (2.16). The result was already given in (2.17).

In analogy to allowing general bulk actions, as we did in Section 3.1, the dynamics of the

hypersurface might be given by generalizations of the DNG action

S =

∫

Σ

√
hf(RΣ, K, X, . . .) (2.36)

where f is a scalar function. In this case the GW anomaly will also change:

A =

∫

∂Σ

√
det hfξ̃τ |finite (2.37)

The fact that the anomaly satisfies the WZ condition is again a consequence of the group

property of the PBH transformations.

As a particular example we consider the action

S =

∫

Σ

√
hf(R(Σ)) (2.38)

where R(Σ) is the Ricci scalar computed with hαβ with the expansion

R(Σ) = 6 +

(

R(2) − 2
(0)

h
ab

(1)

g ab + 1
2

(0)

g ijK
iKj

)

τ + . . . (2.39)

For instance, if we choose f(R(Σ)) = 1 − 1
2R(Σ) the GW-anomaly is purely type A. Alter-

natively we can choose an action for which the R(2) anomaly vanishes .
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3. The back reaction and the Graham-Witten anomalies

The holographic realization as used above involved smooth bulk metrics. We would like

to examine if in the holographic realization a singular metric due to the back reaction of

the DNG could appear and if they may have an influence on the anomaly calaculation. Of

course the boundary value of the metric g(0) is smooth but the solution in the bulk can

acquire singular components if the back reaction of the DNG component of the action is

taken into account.

In the previous section we have treated the dynamics of the bulk independently producing

a solution gij(x, ρ). The embedded surface evolved in this bulk background following the

dynamics prescribed by the DNG action. In this section we will take back reaction of the

hypersurface on the bulk into account, solve the coupled equations of motion and evaluate

the O(ρ−1) term of the on-shell action. According to [3] this computes the Weyl anomaly,

in addition to the contribution coming from the DNG piece.

The total action is

S =

∫

M

dρ ddx
√

G(R − 2Λ) +

∫

Σ

dτ dkx
√

hαβ (3.1)

The equation of motion for the metric can be cast in the form

√
G

(

1

2
(R − 2Λ)Gµν − Rµν

)

= ∆µν (3.2)

with

∆µν = −1

2

∫

Σ

√
hhµνδ(d)(x − X(τ)) δ(ρ− τ) (3.3)

Inserting its trace into the action results in

S = 2d

∫

M

√
G +

d − k − 2

d − 1

∫

Σ

√
h (3.4)

where the second term vanishes if codim(Σ) = 2, which is the case of interest where d = 4

and k = 2. However, the DNG piece of the action will feed back, through the equations of

motion, into the coefficients g(n)

ij .

Using the FG expansion (2.7) one finds the following expression for the on-shell action at

O(ρ−1) [3]
1

4

√

det g(0)

(

tr
(2)

g − 1

2
tr(

(1)

g 2) +
1

4
(tr

(1)

g )2
)

(3.5)
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For g(1) one finds, by solving the (ij)-component of (3.2) at leading non-trivial order in its

ρ-expansion
(1)

g ij =
1

2

(

(0)

Rij −
1

6

(0)

R
(0)

g ij

)

+ δ
(1)

g ij (3.6)

where

δ
(1)

g ij = − 1

4
√

g(0)

∫

dτ

√

(0)

h
(

(0)

h ij −
2

3

(0)

g ij

)

δ(d)(x−
(0)

X) (3.7)

and
(0)

h ij =
(0)

gik

(0)

gjl

(0)

h
ab ∂a

(0)

X
k ∂b

(0)

X
l (3.8)

Note that δg(1) is Weyl invariant and g(1) is no longer universal. Consistency with PBH

and dimensional arguments restrict the most general nonuniversal addition to g(1), which

would result for general bulk and hypersurface action to the above form, but with arbitrary

coefficients for h(0) and g(0) in (3.7).

To find tr(g(2)) it suffices to solve the (ρρ)-component of (3.2) at lowest non-trivial order:

tr(
(2)

g ) =
1

4
tr(

(1)

g 2) − 1

32

1√
g(0)

∫

dτ

√

(0)

hKiKj
(0)

g ijδ
(4)(x−

(0)

X) (3.9)

The expressions (3.6) and (3.9) represent singular contributions to the bulk metric solu-

tion. Using the singular contributions to linear order in the δ-function we will find the

contributions to the Graham-Witten anomaly. Quadratic and higher order terms in the

δ-functions require a regularization producing local counterterms which do not influence

the anomalies.

We find for (3.5) for the case d = 4, k = 2

√
g(0)

8

(

(tr
(1)

g )2−tr(
(1)

g 2)
)
∣

∣

∣

universal

+
1

64

∫

dτ

√

(0)

h(KiKj
(0)

g ij−4
(0)

h
ab

(1)

g ab) δ(d)(x−
(0)

X) (3.10)

where the universal g(1) was given in (2.10). Again there was a crucial cancellation, related

to the one observed above, for codim(Σ) = 2.

Compare (3.10) to (2.35): we have shown that for the simplest bulk and hypersurface

actions, taking into account the back-reaction leads to the same GW anomaly for the total

action (3.1).

The above result has a simple explanation which will allow us to generalize the result

for arbitrary bulk actions. The contributions to the bulk metric specified above once

inserted in the bulk action to linear order in the δ-function produce a term localized

on the submanifold. Moreover this term has the same symmetries as the DNG action.
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Therefore we can use the procedure discussed in Section 3.2. The additional Graham -

Witten anomaly is given by an expression analogous to (2.31) the DNG integrand being

replaced by the term of the bulk action specified above. We will need therefore just the

expansion to order τ2 (order ρ2 in our gauge) of the integrand in the first term in (3.1).

Remembering that g(2) does not appear in the expansion we get the following terms (the

curvatures are computed with g(0)):

tr(
(1)

g 2) − (tr
(1)

g )2−
(1)

g ij Rij +
1

2
R tr

(1)

g (3.11)

In the expression (3.11) we left out terms in which derivatives act on g(1). We will discuss

them in the general setting.

Now, using (3.6) in (3.11) it is easy to verify that all the terms linear in δg(1) vanish without

any need to specify the exact coefficients in δg(1). What is the reason for this vanishing?

As we discussed in Section 3.2 an expression obtained by (2.31) satisfies automatically the

Wess-Zumino condition. Independently of the exact form of the bulk action for dimen-

sional reasons the only expressions which could appear in (3.11) linear in δg(1) are Rab

– the pullback of the Ricci curvature or R – the bulk scalar curvature restricted to the

submanifold. Indeed they do appear in individual terms in (3.11). However once they

are multiplied with the Weyl parameter σ it is easy to check that they do not fulfill the

Wess-Zumino condition and therefore they must cancel in the full expression.

Finally we return to the derivative terms left out above. Again by a dimensional argument

verified explicitly for the aforementioned terms these contributions have the form σ

or Ki∂iσ, restricted to the submanifold. These expressions do satisfy the Wess-Zumino

condition but they are cohomologically trivial being the variations of local expressions as

we discussed in Section 3.2.

In conclusion, for an arbitrary bulk action in d = 5 and an arbitrary three dimensional

DNG action the Graham-Witten anomalies remain unchanged after the back reaction on

the bulk metric is included. This is a consequence of the fact that the Graham-Witten

anomalies classified in section 3.2 cannot originate from the g(1) back reaction term the

only one available in d = 5.
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4. Derivation of the universal type A anomaly coefficient

In [6] it was shown that for any gravitational action (2.1) with has AdS2n+1 as a solution

to the equations of motion, the coefficient a of the unique type A anomaly of dual CFT is

an =
b0

22n(n!)2
(4.1)

where b0 = f(AdS). In [6] this was derived by looking at a conformally flat metric g(0)

and solving the PBH-transformation equation for bn. Here we will present an alternative

derivation which uses the ideas of [9]. There it was observed that while the type B Weyl

anomalies have a trivial descent, the unique (in any even dimensions) type A anomaly has a

non-trivial descent.3 These features might, in fact, serve as the defining distinction between

the two classes of anomalies, which can also be applied to the hypersurface anomalies

discussed in sect. 3.

We begin with a review of the results of [9]. Define

Oj1...jp

12...p+1 =
4p n!

2n(n − p)!

√
ggi1k1

. . . gipkp
ǫi1j1...injnǫk1l1...knln (4.2)

× Rip+1jp+1kp+1lp+1
· · ·Rinjnknlnσ[1∂l1σ2 . . . ∂lpσp+1]

O1 = σ1
√

g E2n (4.3)

with

E2n =
1

2n
ǫi1j1...injnǫk1l1...knlnRi1j1k1l1 · · ·Rinjnknln (4.4)

the d-dimensional Euler density. The normalization is such that E2n = Rn + . . .. O1 is at

the top of the descent which is

δ[p+1O
j1...jp−1

1...p] = ∂p Oj1...jp

1...p+1 (4.5)

and

Oj1...jn

12...n+1 = 2n(n!)2
√

g σ[1∇j1σ2 . . .∇jnσn+1] (4.6)

is at the bottom. In deriving (A.5) we need the Weyl variation of the Riemann tensor

δRijkl = 2σRijkl + gik∇j∇lσ + gjl∇i∇kσ − gil∇j∇kσ − gjk∇i∇lσ (4.7)

3 The descent of cohomologically trivial contributions stops after the second step.
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The holographic version of the descent starts with the d+1 dimensi O =
√

Gf(R). Under

PBH

δ1O = ∂µ(ξµ
1O) ≡ ∂µOµ

1 (4.8)

If we define

Oµ1...µp

1...p = ξµ1

[1 · · · ξµp

p] O (4.9)

we can show, using the group property (2.4)

δp+1Oµ1...µp

1...p = ∂µp+1
Oµ1...µp+1

1...p+1 (4.10)

Using (2.8) for the ρ-expansion of O and ξρ = 2σρ , ξi = 1
2ρgij

(0)∂jσ + O(ρ2) we find

Oρj1...jn

1...n+1 =
1

2n

√
g b0 σ[1∇j1σ2 · · ·∇σjn

n+1] (4.11)

Comparing this with (A.6) we conclude that the holographic type A Weyl anomaly in

d = 2n dimensions is anE2n with an as in (A.1).
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