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1. Introduction

In [1] it was proposed that the entropy of four-dimensional BPS blatgdwithN = 2 super-
symmetry is related to a partition function based on a mixed ensemble defined iroferragnetic
charges and electrostatic potentials. Discarding non-holomorphic tormeehis partition func-
tion equals the modulus square of the topological string partition function. ©badhkis of this
relation it was concluded that the microscopic black hole degeneracidsecaatrieved from the
topological string partition function by an inverse Laplace transform.

Duality invariance, however, is not manifest in the proposal of [1]. Reraative starting point
[2, 3] can be based on an ensemble of electric and magnetic chargels,isvimanifestly invariant
under duality. From this set-up the previous formulation based on the mixgtigpefunction can
be reobtained in the semiclassical approximation, but, as it turns out, it is cawn@anied by a
non-trivial measure factor. Independently, a direct evaluation of thedhartition function from
specific microscopic degeneracy formulae also revealed the preseacaeasure factor [4], and
it was shown that for large charges these measure factors were eqfaat[3, 5].

Non-holomorphic terms are essential for duality invariance. In [6] a metlazdpresented for
incorporating them into black hole partition functions, suggesting that mtm+orphic deforma-
tions are possible in the context of special geometry. We briefly reviewvouk in [6] and we
refer to [6, 7] for a detailed presentation.

2. TheBPSblack holefree energy and the partition function

At the field-theoretic level it is known that the attractor equations that deterthavalues of
the moduli at the black hole horizon [8, 9, 10], follow from a variationahgiple. This variational
principle is described in terms of a so-called entropy function. There enstatropy function for
extremal black holes [11, 12], where the attractor mechanism is induc#tkehestricted space-
time geometry of the horizon, and one for BPS black holes [3], where trectitrmechanism
follows from supersymmetry enhancement at the horizon. NFef 2 supergravity the relation
between these entropy functions has been clarified in [13]. To peegleewariational principle
when non-holomorphic corrections are present, it follows that theseatmns must enter into the
BPS free energy in a well-defined way.

We consider charged black holes in the contextNof 2 supergravity in four space-time
dimensions, which contains+ 1 abelian vector gauge fields, labeled by indicgs= 0, 1,....n,
so that black hole solutions can carrjn2- 1) possible electric and magnetic charges. The theory
describes the supergravity fields andrector multiplets (the extra indeix= 0 accounts for the
gauge field that belongs to the supergravity multiplet), and possibly a nurhbgpermultiplets
which will only play an ancillary role. A partition sum over a canonical enderabcorresponding
BPS black hole microstates is defined as follows,

Z(g.x)= 5 d(p,q)em@?Fxl, (2.2)
{p.a}

whered(p,q) denotes the degeneracy of the black hole microstates with given magnetteand
tric charges equal tp' andq;, respectively. This expression is consistent with electric/magnetic
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duality, provided that the electro- and magnetostatic potentigls ) transform as a symplectic
vector, just as the chargég',q), while the degeneracied(p,q) transform as functions of the
charges under the duality. In case that the duality is realized as a symmestryhéd( p, q) should
be invariant.

Viewing Z(@, x) as an analytic function ip' and;, the degeneracieX p,q) can be retrieved
by an inverse Laplace transform,

d(p,q) D/ de' dxi Z(g, x) €A +P XL (2.2)

where the integration contours run, for instance, over the intefgalsi, @ +i) and(x —i,x +1)
(we are assuming an integer-valued charge lattice). Obviously, this methes as long a&(@, x)
is formally periodic under shifts ap and x by multiples of 2i.

In [2, 3] it was proposed to identify the logarithm 8f ¢, x) with a free energy that equals
twice the so-called Hesse potential. These expressions can also be writteménof the usual
complex variable¥' andF, whereFR = dF /dY'. Then, the electro- and magnetostatic potentials
are [14]

¢ =Y'+Y',  xi=R+F (2.3)

and the resulting expression fofqg, p) can be written as

d(p,q) O / d(Y +Y) d(F +F), &="Y-pa / dy'dy' A(Y,Y) €EYYR0 - (2.4)
Whe_reA(Y,\?) denotes the Jacobian associated with the change of integration vafi@bies—
(Y,Y), andZ denotes the BPS entropy function

S(Y,Y,p,q) = Z(Y,Y) —a (Y +Y) +p' (R +R). (2.5)

Herep' andg couple to the corresponding magneto- and electrostatic potentials (c.). 2tBe
horizon in a way that is consistent with electric/magnetic duality. Furtherrt%(bf,\?) represents
the free energy alluded to earlier. The black hole attractor equations fisthowthe variation o&
with respect to the'',

Y -Y'=ip, F-F=iq. (2.6)

These equations determine the values oftthat the black hole horizon in terms of the charges.
Thus, stationary points &f satisfy the attractor equations.

The expression (2.4) is duality invariant provided thas duality invariant. Sinc& depends
on the Weyl background field" (which takes the valu& = —64 at the horizon) througk, the
duality invariance o actually requires- to contain non-holomorphic terms. As shown in [6],
these can be incorporated by requiring that in their presence, the vaaiagtionciple forZ still
gives attractor equations that retain the form (2.6). This is possible g functiorF is taken
to be of the form

F=FOM)+2iQ(Y,Y,Y,Y), (2.7)

with Q a real homogeneous function of second degree.
The decomposition (2.7) seems to take the form of a consistent non-holeicdgiormation
of special geometry, as we now review.
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3. Non-holomor phic defor mations of special geometry?

Here we consider some of the more conceptual issues related to thegerefaan-holomorphic
corrections. Let us consider electric/magnetic dualities on the pei¥ddB; ), which take the form
of Sp(2n) rotations. Here we do not assume that Epeare holomorphic functions or sections.
Hence we have holomorphic and anti-holomorphic coordindteand X', while the R may de-
pend on bothX' andX'. To avoid ambiguous notation we will use anti-holomorphic indices
wherever necessary.

Electric/magnetic dualities are defined by monodromy transformations of tloelpedefined
in the usual way,

X' — X' =uU';x? 4+ 2R,
R — R =V R +WX?, (3.1)

whereU, V, Z andW are the(n+ 1) x (n+ 1) submatrices that constitute an element of2Bp-
2,R). As a result the relation between the old and the new fidsndX', will no longer define
a holomorphic map, and we note,

ox!

S y=U"34+2"¥Rs, W:z'KFKJ—, (3.2)

oxJI —
whereFR; = 6F|/<5'XJ andFRj= dH/d)ZJ. Let us consider the transformation behaviourFgf
induced by electric/magnetic duality (3.1). Straightforward use of the chigryrelds the relation,

Ry — Ry = (P +Wik) [ YK, (3.3)
where

fy = Ry Fr 25 Fo,
Ay =U"+2%FRq,
7V = Yz, (3.4)

As was shown in [15],2°"Y is a symmetric matrix by virtue of the fact that the duality matrix
belongs to S{2n+2,R). For the same reasdy’ 1]'x ZKJ is also symmetric ir{l,J). Observe
that 21V satisfies the equation,

OV = — KR 2V (3.5)

Let us now assume th&; is symmetric inl andJ. This symmetry implies that thig can
be written as the holomorphic derivatives of some funcfig, X). It is of interest to determine
whether this symmetry is preserved under duality. In general this is noatee ¢lowever, when
we assume that

Ri=+Fj, (3.6)

thenF; will also be symmetric. In that case one can derive from (3.3)Ehatnust be symmeiric
as well, so that thé; can be expressed as the holomorphic derivatives of some furf€férX)
with respect toX'. This is a first indication that non-holomorphic deformations satisfying (%6)
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be consistent with the special geometry transformations of the periodsefdeth we will assume
that (3.6) holds. Observe that termsHrthat depend exclusively ox' are not determined by the
above arguments.

Let us further assume that the functibndepends on some auxiliary real paramejeand
consider partial derivatives with respect to it. A little calculation showsdhBt transforms in the
following way, o

drllf| = [é_l}‘ﬂ [5,7F‘]—FJK_Q;KL5QF_[} s (3.7)

where then-derivative indnlf. ()?,5(; n) is a partial derivative that does not act on the arguments
X! and their complex conjugates, and likewise gyt (X,X;n) the argumentX' and their com-
plex conjugates are kept fixed. Let us now assume that the furié(ihn)?; n) decomposes into

a holomorphic function oX' and a purely imaginary function that dependsXn its complex
conjugates, and on the auxiliary parameter

FX,X;n) =FO(X)+2iQ(X,X;n), (3.8)
whereQ is real, just as in (2.7). For this class of functions we have the followinditiizs)
Fy=—Fi.,  OhF=—0F, (3.9)
so that we must adopt the minus sign in (3.6). With this result we can establish tha
InF (X, X;n) = F (X, X:n), (3.10)

up to terms that no longer dependXhandX'. Ignoring such terms on the ground that they are not
relevant for the vector multiplet Lagrangian, this implies that the first dévevaf the functionF
with respect to some auxiliary parameter transforms as a function undeicteagnetic duality.

Of course, it is crucial that we assumed the decomposition (3.8) sajtlagipears only in the
non-holomorphic componef of F.

When the electric/magnetic duality defines a symmetry, then it followsdjtatmust be in-
variant under this symmetry. The above arguments, when applied to thenkeegy for BPS black
holes, imply that the free energy and hence alsoe duality invariant [6].

We stress that the effective action encoded in a non-holomorphic furkeignot fully known.
Although the arguments presented above indicate that non-holomorpbitrddions are possible
within the context of special gometry, a lot of work remains to be done inrdodestablish the full
consistency and the implications of this approach.
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