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1. Introduction

Black hole entropy assumes considerable importance due to the fact that fironade us
with an insight to the microscopic structure of the gravitational theory threligtmicrocanonical,
Boltzmann relatiorS= (k; InQ), whereQ is the total number of quantum states that are accessible
to a black hole described by a small set of classical parameters. Thedifigoproaches that have
been adopted in the literature to understand the microscopic origin of bldelehtropy can be
broadly classified into two categories. (i) Count the “microstates” by asguafimndamental struc-
ture like D-branes, spin networks or conformal symmetry [1, 2, 3, 4] A@3ociate the black hole
entropy to the quantum fields propagating in a fixed black hole spacetimepantthe microstates
of these quantum fields [5, 6, 7, 8, 9, 10]. Interestingly, while all thepeaaches arrive at the lead-
ing Bekenstein-Hawking term, they, generally, seem to lead to differéntesding contributions.
For instance, (i) the prefactor to the logarithmic corrections obtained usengpim-networks and
conformal symmetry [11, 12, 13, 14, 15] are different from the oneioled using the statistical
fluctuations around thermal equilibrium [16], and (ii) the power-law atiioms obtained using the
Noether charge approach [8] are different from those via entangleaighe modes between in-
side and outside the horizon [17]. In other words, even though diffelegrees of freedom lead to
the universal Bekenstein-Hawking entropy gtite naturally— they lead to different sub-leading
terms. This indicates that the key to the understanding of the statistical mealhatégpretation of
Bekenstein-Hawking entropy may lie in the origin of the sub-leading contribsiti®hysically, it
is natural to expect corrections to Bekenstein-Hawking entropy. Thertein-Hawking entropy
is a semi-classical result, and there are strong indications that it is validrfr bdack holes (i.e.
when horizon radius is much larger than the Planck length]). Howevemadtislear whether this
relation will continue to hold for, say, Planck size black holes. Besider th@o reason to expect
that the Bekenstein-Hawking entropy to be the complete answer in a ctesmly of quantum
gravity.

The brick wall approach is a semi-classical approach, wherein thegbmakd geometry is
assumed to be a fixed classical background in which quantum fieldsgatgpaThe entropy of
the black hole is identified with the statistical mechanical entropy arising fronerantid bath of
quantum fields propagating outside the horizon. The entropy computed iwalyisurns out to
be proportional to the area of the horizon. This approach has begrpupular in obtaining the
leading order to the black hole entropy in different dimensions (for amimdete list of references,
see Refs. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 334835)).

The original brick wall model involved only the leading order WKB approxioa[5, 18, 19].

A natural question that arises is whether working at the higher orders imytproximation will lead

to any corrections to the Bekenstein-Hawking entropy. In this work, wenekthe zeroth-order
(R%) WKB analysis to the higher orders and show that (i) The contribution tonitregy from the
higher-order WKB modes is of the same order as the leading order WKBsndal@ther words,
our analysis shows that it may be incomplete to calculate the contribution omiytfre leading
order WKB modes. (ii) The brick-wall entrop{sg,,) leads to generic corrections to area of the
form:

Sw =S, +9(ah)+ 7 (o) log (”Z?) , (1.1)
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where¥ (e4), and.# (e7y) are polynomial functions of7,. In the case of four-dimensions, the
brick-wall entropy (upto sixth-order) [36] has the form given aboxth ¢ («4) = 0. In the case
of six-dimensions (<) # 0. (iii) We show that, only in the case of Schwarzschifél(.o#) is a
constant.

The remainder of this article is organized as follows. In the next sectiosha#outline some
essential properties of static, spherically symmetric black holes in arbitpagetime dimensions.
Then, in Section 3, we shall discuss the assumptions and approximatioh&thiroevaluating the
brick wall entropy, and describe the procedure for extending the ledilon to the higher orders
(in terms ofh) in the WKB approximation. In Section 4, in addition to the zeroth order, wé sha
evaluate the contributions to the brick wall entropy of four dimensional bitexd&s at the second
order (in terms of) in the WKB approximation. In Section 5, we explicitly write down the results
for a few specific black hole solutions in four dimensions. Finally, in Sectioaf@r a rapid
summary of the results we have obtained, we shall discuss as to how theaslitg contributions
we have evaluated compare with the results obtained from the other appsoac

Let us now briefly list the conventions and notations we shall adopt. W& ghaeneral,
consider &D + 2)-dimensional, spherically symmetric, black hole spacetime. We shall work with
the metric signaturé—, +,+,---), and use the geometric units wher&jn=c= G = 1. We shall
denote the derivative of any function with respect to the radial cootelimaf the black hole by an
overprime. The quantum fiel@ we shall consider will be a minimally coupled scalar field.

2. Key properties of static, spherically symmetric black hdes:

Consider the following D + 2)-dimensional static and spherically symmetric line element

dr

g(r)
= f(r) [~dt®+dx*] +r?dQZ, (2.2)

d$ = —f(r)dt? + —— +r2dQ2, (2.1)

wheref(r) andg(r) are arbitrary (but, continuous and differentiable) functions of the fadiar-
dinater, ng is the metric on &-dimensional unit sphere, and

X = / _dar 2.3)
Vo)

denotes the tortoise coordinate. Throughout this work, we shall assagaéhline-element (2.1)
contains a singularity (say, at= 0) andone non-degenerate, event horizon (located at,1say;,,)
But, we shall not assume any specific formfdf) or g(r). In the rest of this section, we shall
discuss some generic properties of the spacetime (2.1) near the horizerr at

In almost all approaches that evaluate the entropy of spherically symmietci oles, their
line-element close to the event horizon is approximated to be that of a Rinpleetime (see,
for instance, Ref. [32]). For the line-element (2.1), the Rindler bemanéar the horizon can be
arrived at by first carrying out the following transformation of the rad@ordinate:

r= () Vi (2.4

K
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wherek is a constant that denotes the surface gravity of the black hole and isdlefn(see, for
example, Ref. [40])

_ |, /90 (fn)
K—[ f(r)< > . (2.5)
r=ry,
In terms of the coordinatg, the line-element (2.1) can be expressed as
2 2 f K\? 2402
ds? = —k?y?dt? + 4 ) \F dy? +r2dQ3. (2.6)

Close to the horizon (i.e. near=r,), this line-element reduces to
d$ — —k?y?dt? +dy?* +r2 dQ3 (2.7)

which describes the Rindler spacetime with a horizon that is locatge-dl. It should be stressed
here that such a behavior is exhibited by all non-degenerate black tii@mhs in all dimensions.

The above derivation of the Rindler line-element near the horizon is sterquivalent to
expanding the metric componerft§) andg(r) in (2.1) about,, up to the linear order in the Taylor
series. However, we find that, when evaluating the contributions to the Wwatlkentropy at the
higher orders in the WKB approximation, we need to expand the quantiti¢gndg(r) to higher
orders as follows:

f(r) = f'(r,)(r—r,)+ <f//(2r'*)> (r=r,)%+..., (2.8)

_q 9O (¢ 2
a(r) = d(r) (=1 + (52 ) e 29)

As we shall see, in four dimensions, in addition to the surface gravity of ldak hole, the cor-
rections to the Bekenstein-Hawking entrdfly, also depend on the second derivative of the metric
evaluated at the horizon.

Another quantity which we shall require in our calculations is the proper erctiordinate
invariant distance of the brick wall from the horizon. The proper radistance to the brick wall,
say,hg, that is located at = h is given by

r,th

dr
he = / o (2.10)

"

On using the expansion (2) fg(r) up to the second order in this integral, we obtain the following
relation betweet andh:

29(r,) g'(ry) (e
1/2 _ H H T
h g0 smh[ > > . (2.11)
For smallh, this relation simplifies to
4h
he = , 2.12
< Vo) (242

and, for convenience, we shall use this expression for the progandesto the brick wall.
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3. Extending the brick wall model to higher WKB orders

In this section, after a rapid sketch of the assumptions and approximatidrsehiavolved in
evaluating the black hole entropy using the brick wall model, we go on to outlenprtitedure for
computing the brick wall entropy at the leading orders in the WKB approximation

3.1 Basic assumptions

There are two crucial assumptions in the brick wall approach to black mtepsy. The first
assumption concerns the modeling of the microscopic origin of the black htiepgnand the
second is regarding the handling of the divergences that arise closedwgdht horizon.

As we have mentioned before, the brick wall model is a semi-classical apprherein
the black hole is assumed to be described by a fixed classical geometryfuitthisr assumed
that the black hole is in equilibrium with a thermal bath of quantum matter fields aialkding
temperature. Moreover, it is the canonical entropy (actually, a speoifipponent) of the quantum
matter fields that are propagating outside the black hole horizon that is idemtifiee the entropy
of the black hole.

In the process of calculating the canonical entropy of a matter field outsedbléick hole
horizon, we need to evaluate the density of states of the field. Howewverirs that, due to
the infinite blue shifting of the modes in the vicinity of the event horizon, the itlen$ states
actually diverges. This divergence is regulated in the model by introducout-off by hand above
the horizon. The cut-off—popularly referred to as the brick-wall—isitelty a static, spherical
mirror at which the matter fields are assumed to satisfy, say, the Dirichletdaoyconditions.
One finds that the leading component of the brick wall entropy divergés 3 whereh, is the
proper distance to the brick wall defined in Eqg. (2.10). (The other coemiois essentially a
volume dependent term that arises even in flat space.) It is this contriib@ois identified to
be the entropy of the black hole. Moreover, a specific choice for theffui; has to be made
(this depends on the number of fields, the dimension of the spacetime, efs.geuaerally of the
order of the Planck length, ), in order to reproduce the Bekenstein-Hawking area law. As we
mentioned, the area law has been recovered in this approach for a \@riBagck hole spacetimes
and matter fields [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,3348 35, 37].

3.2 Essential approximations

Two approximations turn out to be essential to make the computation of the kalt&ntropy
tractable. The first approximation is required in evaluating the density ofsstditeatter fields
around black holes, and the second involves expanding the metric nesuethiehorizon.

As we pointed out above, in order to evaluate the brick wall entropy, eedsito evaluate the
density of states of matter fields around black holes. However, apartdome lower dimensional
cases, the density of states cannot be evaluated exactly. As a resultbicthevall model, the
density of states is usually evaluated at the leading ordeirirthe WKB approximation.

Moreover, barring a few special cases, one finds that, even aftaiV® approximation,
the brick wall entropy cannot be evaluated exactly. Recall that the dointoarribution to the
entropy arises due to the modes close to the horizon. Motivated by thisdeah#& Taylor expands
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the metric functiond (r) andg(r) near the horizon in order to obtain a closed form expression for
the brick wall entropy.

3.3 The methodology

Having discussed the assumptions and approximations involved in the brickppaoach,
in the remainder of this sub-section, we shall outline the procedure fdwagirsg the brick wall
entropy at the leading order in the WKB approximation.

The key assumption of the brick wall model, as we have pointed out abotlegtithe black
hole is in equilibrium with a bath of thermal radiation at the Hawking temperaturesdidle. The
free energyF of a scalar field at the inverse temperat@res given by (see, for example, Ref. [5])

F - (;) ZdE (dz(EE)) In[1—exp—(BE)] ,

- /  (orpipe) 1) &4

wherel (E) denotes the total number of modes of the field with energy less Ehakve have
integrated the first of the above equation by parts to arrive at the segcmhidave assumed that the
boundary term vanishes. The canonical entropy associated with therfexgyF is given by

S.(B) = B2 (g;) | (3.2)

and, itis this entropy, evaluated at the Hawking temperature, that will béfieerto be the entropy
of the black hole.

Consider a massive and minimally coupled scalar fi@ldhat is propagating in the line-
element (2.1). Such a field satisfies the differential equation

(O-n?) ®=0, (3.3)

wherem denotes the mass of the field. The rotational symmetry of the line-element {2vi$ as
to decompose the normal mod.ﬂ=E§rni of the field® as follows (see, for instance, Ref. [41]):

R(r (i
Uem () = (mzé%) Yim (6, @) &=/, (3.4)

whereE, ¢ andm (with i € [1,(D — 1)]) are the energy, angular momentum and the azimuthal
angular momenta associated with the modes, respectively, the quaftjtis given by

G(r) = v f(r)ar), (3.5)

andYim, (8, @) denote the hyper-spherical harmonics. On substituting the mode (3.4) inuthtaey
of motion (3.3) and using the properties of the hyper-spherical harmamicénd that the function
R(r) satisfies the differential equation

—A(r)] R(r) =0, (3.6)
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where the quantitieg?(r) andA(r) are given by

V2(r) = (Gzl(r)) <E2— f(r) [mZ+ (W)D : (3.7)
o0~ (0)- () +(8) (8)+(°%2) oo

The total number of moddsE) of the field® with energy less thal can be evaluated exactly
if the solution to the differential equation (3.6) can be written down explicitlyweler, apart from
some simplé1+ 1)-dimensional example [28], it proves to be difficult to obtain an exact gicaly
solution for the functiorR(r). As a result, the WKB approximation is almost always resorted to
in the literature [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 3238335], and it is the leading
order WKB solution folR(r) that is utilized to evaluate the number of stdi¢g ), and the resulting
free energyF and the entropy of the quantum field. Our goal here is to extend the antiytbis
higher orders in the WKB approximation.

Let us begin by expressing the functiBr) in the following WKB form:

R(r) = ( (I;O(r)> exp[%/dFP(F)] , (3.9)

wherecy is a constant. On substituting this expression in Eq. (3.6), we find that tieédaorP(r)
satisfies the differential equation

(3 oo () () () (50) 0 o

Let us now expand the functid?(r) in a power series if? as follows (see, for instance, Ref. [42)):

P(r) = iﬁZ” Pon(r). (3.11)

On substituting this series in the differential equation (3.9) and collecting tmstefra given order
in A2, we obtain following expressions @ (r) upton = 3:

Po(r) = £V(r) =+ (G(lr)> [EZ— f(r) (mz+ [WD]W, (3.12)

Po(r) = <8p0 ><P§E:;>2 <4PN ) ( r() (3.13)
() (T ()
3 // 2
- (Pf) () (g
_< 2P (1) Po(r) + 2Pu(r Wi - 3P§2<r>—6PA<r>V'<r>>. 315
8V3(r)
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Note that the functior(r) is relatedalgebraicallyto the quantitied/(r) andA(r). It is evident
that the higher order functiori®n(r) (with n > 0) can be expressed in terms of the functions at the
lower orders and their derivatives and, eventually, in terms of the fum&y().

On using the series expansion (3.11) in the standard semiclassical gtiantiracedure [5],
we can express the total number of stdiés) of the field with energy less thah as follows:

r(E)= Z)FZn(E)a (3.16)
where we have defindth,(E) as
p-1y o (me
r2n(E):< - )/dl‘/dﬁ (20+D-1)
rH+hC 0
X W (£) Pn(r), (3.17)

with the quantity# (¢) being given by

(+D-2)!
W (l) = <((D—1)'€)'> . (3.18)

It should be mentioned that, in the above expressiort fa(E), we have approximated the sum
over the angular quantum numbéras an integral with a degeneracy fac#i(¢). Such an ap-
proximation is often made in the literature, and the approximation is considerezivalid since
the separation between the states are expected to be small [26]. Motbevepper limit/,_, on
the integral over is a function of energ¥ of the mode and the radial coordinateand it has to be
chosen such th#&(r) is real. Furthermore, the lower limit on the integral over radial coordinate,
viz. he, is the invariant thickness of the ‘brick-wall’ defined in (2.10), and thpargimit L is the
infra-red cutoff which we shall assume to be much larger than the horaating.

A few clarifying remarks are in order at this stage of our discussion. Instdmi-classical
gquantization of, say, a one-dimensional non-relativistic guantum patti@entegral over the co-
ordinate will be carried out over the range wherBjris real [42]. In the case of bounded systems,
these limits will prove to be the turning points of the potential, whereas in the dgsatential
barriers the limits will be between one of the turning points and infinity. In theesarof black
holes, the effective potential turns out to be a barrier and the integeatlog radial coordinate is to
carried out between the event horizon of the black hole and the firshtupoint that is located on
the barrier. But, one finds that, most of the contribution to the density of sifitee quantum field
arises due to the modes close to the event horizon of the black hole, whilppkelimit located
on the barrier leads to a volume dependent contribution to the entropy. &ssit, the contribution
to the number of states and the free energy and the entropy of the quaatdmiue to the upper
(infra-red) limit is usually ignored in the literature.

We should emphasize the point that, apart from replacing the sum¢dyean integral, we
have not made any approximations until now. Hereafter, we shall makegproximations that

LActually, the limits have to be chosen such tRgi(r) are real for alln. However, since, fon > 0, the functions
Pon(r) can be expressed in terms@f(r) and the real function¥ (r) andA(r), whenPy(r) is real, P (r) are real as
well. Therefore, the limits o proves to be the same for ail
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we had discussed is some detail in the last subsection. Firstly, we shatixappte the line-
element (2.1) near the event horizon of a spherically symmetric black hole thab of Rindler
spacetime, viz. Eq. (2.7). It should be pointed out that such an apprtainia always made in
the literature to arrive at closed form expressions for the free ermrdyhe entropy of the quantum
field. Secondly, we shall truncate the series (3.11) at a particular, @deievaluate the density of
states and the associated free energy and the entropy of the quantuardieid the black hole.
It is important to note that, in the literature, it is only the leading term in the serié§)&at has
alwaysbeen taken into account ignoring the higher orders when evaluatingittkeviall entropy.

3.4 The standard, leading order, result

Let us now reproduce the standard leading order result arrivingeaB#kenstein-Hawking
area law. In the case of massless scalar field, the leading order WKB rai@gsen by

1 X L2 1/2
Substituting the above expression in Eq. (3.17), we get
L
2E3 r2dr
r,+h

H

Substituting the above expression in (3.1) and integrating By#re free energy now reads

L
2 1 r?
=——— ——dr 3.21
ry+h
and the entropy is
L
8m 1 r?
= —— ——dr 3.22
T /h g (r) (822
r

"
On expanding the metric near the horizon up to the first-order, we retlogdollowing standard
result [5],

2
Std) _ M 2
9002 (3.23)
However, if we expand the metric to higher orders (2), we get
r2 Kr g”(r )I’2 r2
_ _H H _ HZH H .24
=g |90 360 |9 re (3.24)

Before we proceed with the calculations, there is yet another point oungahe higher order
WKB terms that we need to discuss. As we mentioned above, the limits on the Itegird has
been chosen such thgi(r) is real. This condition essentially identifies the turning points of the
potential. Notice that, in Eq. (3.3), all the higher order WKB terms—iRe,(r) for n > 0—
containPy(r) in the denominator. Obviously, these functions will diverge at the turnirigtgo
or equivalently, at the upper limité Such a divergence is a well-known feature of the WKB
approximation at the higher orders [42], and we shall devise a systematiedure to isolate these
divergences. We shall outline this procedure in the next section.
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4. Higher order contributions to the brick wall entropy

In this section, we shall evaluate the brick wall entropy for spherically sytmendour di-
mensional black holes by considering the contributions up tathel term in the series expan-
sion (3.16) for the number of states of the quantum field. For simplicity, Wk abhasider here the
case off (r) = g(r) in the line-element (2.1) and restrict ourselves to a massless scalar field (i.e.
m = 0). For other general cases, we refer the readers to Ref. [36].

Let us now evaluate the contribution due to the 1 term in the series (3.16). Fé(r) =g(r),
we find that the expression (3.13) for second order ‘moment(n’) can be written as

o () oo (S oo ().
where the function®” (r), Py (r) andP}” (r) are given by
0=~ (%)
0= (355) (%) - (%) - (29).

o (3)() (). (). e

and, for convenience, we have defined

G(&,1)=[6 A2 (4.3)
with & = E? andA (r) being given by

A(r) = [(0+1)R?] <gr(£>> . (4.4)

We now need to substitute the above expressioRfiar) in Eq. (3.17) and evaluate the number
of moded ™, with the upper limit/max 0n the integral ovef being determined by the condition that
the term@(&,r) vanishes. Clearly, the integral ovémwill diverge in such a case. In order to
isolate the finite contribution due to these higher order WKB modes, it is rergetbst we follow
a systematic procedure. The procedure we shall adopt is as followsh&lefirst rewrite all the
terms containing inverse powers@f{ &', r) in terms of derivatives of as follows:

<%;o>:2<%ﬁiﬂ) (4.5)
2
<%5(<f,r>> - (3) ( 367 ) C)

10
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Then, before evaluating theintegral, we shall make use of the Leibnitz’s rule, viz.

b(x) b(x

;/ fixt] = fx,ax)] <d3(:)> — f[x,b(X)] (dz(;)> })dt [dfé’;’t)]. (4.8)

a(x) a(x)

and interchange the order of differentiation and integration over thegerteand ¢. When we
do so, we find that the divergences occur at the turning point. But, wethat the origin of the
divergent terms can be associated to the break-down of WKB approxmredtithe turning point.
As a result, this is not a physical divergences and this is occurring dtietfact that the WKB
approximation is not valid close to the turning points. Hence, it is perfectlgistance to separate
out only the non divergent part and neglect the divergent contribudso, it can be shown that
by introducing a cutoff close to the turning point that the results are indkgperof the cutoff. (For
details, see Sec. (10.7) in Ref. [42].) We have checked the procegucethe 8-order WKB
modes and, indeed, it systematically separates the finite parts from thgativenes (for detalils,
see Ref. [36].

Having obtained the non-divergent part of the mode-functions ascaiumof E, our next step
is to evaluate the contribution of these modes to the density of diat€g. Using the general
expression (3.17), we have

fmax

/dr/ (20+1)Po(r). 4.9)

H—"_h

Substituting forP(r) from Eq. (4.1) and using the relations (4), we get

2P
/d /d)\ M (4.10)
rH+h

0% (&

2
/drr P /d/\ A
rH+h

3r2P2 , 0%9(&,1)

+ = /d /d)\/\ g,

rH+h

Using the Leibniz rule (4.8) and following the steps discussed in [36], we ge

L
_E 1 4rg/(r) gr)? g'(r)
€)= i [ dr[s‘ 3q(1) “2{39<r>2‘29<r>}]' (4.11)

ry+h

Following points are worth noting regarding the above expression: (i)drcése of leading order
WKB modes, the density of states goesEds[see Eqg. (3.20)]. However, for the second-order
WKB modes the density of states scaleg&aii) As in the leading-order, most of the contributions
to the entropy come close to the horizon.

11
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Substituting the above expression in Eqg. (3.1), and integratinguvie free-energy is

L
_ oo [1 4g(n) gr? dg'(n
R g [ 5 s (02| (442

ry+h

Using the relation (3.2), the entropy is given by

L
L b S O R A (S {0
%" 3 .{hdr[s s (e~ 5ar))| @32

As mentioned above, maximum contribution to the entropy is from the modes clogeltorikon.
Hence, using the expansion (2) close to the horizon and the definitiomfatswgravity (2.5), we

get,
r2
log (h;> (4.14)
C

whereh. is given by Eq. (2.12). We would like to stress the following points regardiegtiove
result:

2o | 72 o™

12 (@R«
T on

1. The dependence of the entropy on area (from the second-ord& mbdes) is similar to
that from the zeroth order WKB modes (3.24). Also the contribution to th@pptirom the
second order WKB modes contribute more as compared to the leading oKIBmvdédes.
This result has two immediate consequences:

(a) To associate the brick-wall entropy$g, it is necessaryo calculate all the higher order
WKB mode contribution to the brick-wall entropy.

(b) The sub-leading corrections (at the zeroth and second order Wd€pend only on
the surface gravity and second derivative of the metric functions. THneyof the form
F () log(, /h}).

2. If the surface gravity is inversely proportional to horizon radius ghd,, ) is inversely pro-
portional to the square of the horizon radius, then second term in the Ri#51d) is a
constant. In this case, the correctionsStp are purely logarithmic and does not contain any
power-law dependence. This uniguely corresponds to Schwarzsglitrbtime.

In the case of Schwarzschild, we have
fr)=9g(r)=1-— (4.15)

whereM is the mass of the black hole. The horizon is,at 2M, k = 1/(4M) andg”(r,,) =
—1/(2M?2). Substituting the above expressions in Eq. (4.14), we get

4M2 1 r2
S=-———log| 2. (4.16)
92 36 (hg

This result shows that, at least, in the zeroth and second order, tleen® g@ower-law cor-
rections toS,,, for the four-dimensional Schwarzschild black hole, while, for all otHack
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holes — sincex andg”(r) has a more non-trivial structure — there are power-law corrections
to the Bekenstein-Hawking entropy. This leads to the following concludibe: power-law
corrections to the entropy occur for any non-vacuum solutidnsSec. (5) we obtain the
entropy for some known black hole solutions.

5. Results for specific black holes

In this section, we shall explicitly write down the brick wall entropy (evaluatetb the second
order in the WKB approximation) for a few well-known black hole solutionsoarfdimensions.

We find that, on combining the zeroth order (3.24) and the second orddh) ¢¢rms, the total
brick wall entropy can be expressed as

o,
S0 =S+ 70 ) log (7). 5
PI

where, in order for the leading term to match the Bekenstein-Hawking entvap have set the

brick wall invariant cutoffh; to be
2 11[%

and the quantity “P) (o4, is given by

F4D) (of)) = — <610> g'(r,)r2— (110) KT, . (5.3)

5.0.1 Schwarzschild black hole

For the Schwarzschild black hole, the metric coefficients are given b{4Ekp) and the event-
horizon of the black hole is located at = (2M). The surface gravitx and the second derivative
of the metric at the horizon are given by

(AN gy (L
On substituting these expressions in Eq. (5.1), we obtain that
D g - <1> log <%> (5.5)
ch =™ {60 2

5.0.2 Schwarzschild (anti-)de sitter spacetime
For the Schwarzschild (anti-)de sitter spacetime, the metric fungtions given by
2M {2 2 r?
g(r)_<1_Fi|2>_<l_riy> (5.6)

wherey = (I/M)?, r = (f/M), M is the mass of the black holejs related to the positive (neg-
ative) cosmological constant are(+) corresponds to (anti-)de Sitter spacetime. Note that the
coordinatesy andr are dimensionless. While the Schwarzschild anti-de Sitter spacetime has only
one horizon associated with the singularity at the origin, the Schwarzs@hitkr has two—one

13
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event and one cosmological— horizons. Here, we shall focus on thepgrassociated with the
event-horizon.

Recall that the event horizon is identified by the conditign) = 0. On substituting the re-
sultingr,, corresponding to the aboggr) in Eq. (5.1), we find that the brick wall entropy upto the
second order can be expressed as

1/2 o M2 of
4D) T H H
=S, | —5+— Iog< >, (5.7)
ch-(a)dS H (15 ,Hl/z n’y) £|§|

where 7, defined in-terms of the coordinateis also dimensionless. In contrast to the purely
Schwarzschild case wherein the prefactor to the logarithmic correctioraveasstant, here the
factor is a function of the horizon area.

5.0.3 Reissner-Nordstrom black hole

For the Reissner-Nordstrom black hole, we have

o(r) = <1—2Ir~\/|+$22> = <(r—r_2£r—r+)> , (5.8)

whereM andQ denotes the mass and the electric charge of the black hole. Atsé/M andr.
is the outer/inner horizon given by

= <1i\/1— ﬁi) , (5.9)

where, againy is a dimensionless variable. It is the outer horizanthat is the event horizon of
the black hole.
On substituting the above relations in Eqg. (5.1), we obtain the brick wall gntupfo the

second order to be
1/2 2
) _o [T log [ M=% 1
N SBH (15%}}/2) Og ( ggl 3 (5 O)

where, againg/, defined in-terms of is dimensionless. As in the previous example, the prefactor
again turns out to be a function of the horizon arga

It turns out that fom = 2, there is no contribution to brick wall entropy. We find that, at the
sixth order, i.e. fom = 3, all the conclusions we have reached for the 1 case remain valid
except the total entropy is dependent on the third derivative of the meinictibn evaluated on
the horizon. We have also repeated these calculations in six dimensioriar{far details, see
Ref. [36]).

6. Discussion

6.1 Summary

As we have pointed out repeatedly, the brick wall model has been a @pojar approach that
has been utilized to recover the Bekenstein-Hawking ent&pyn a multitude of situations [20,
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21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In aelid¢lefforts, it is only the leading
term in the WKB expansion (3.16) that has been taken into account in éuglile density of
states and the associated free energy and entropy of quantum fieldsl drlack holes. Also, the
metric has almost always been assumed to be of the Rindler form near titehevigon.

In this work, we have extended the brick wall approach to the highersidehe WKB ap-
proximation. Moreover, by expanding the metric functidris) andg(r) beyond the leading order
near the event horizon, we have been able to evaluate the correctiorsBekbnstein-Hawking
entropy for spherically symmetric black holes in four and six dimensions.eginbwith, we have
illustrated that, even the often considered zeroth order term in the WKRB=ippation leads to
corrections to the Bekenstein-Hawking entropy, provided the metric furstoe expanded be-
yond the linear order near the horizon. Secondly, we have shown lthihediigher order terms
in the WKB approximation have the same form as the zeroth order term. Lastlind/that, the
higher order WKB terms actually contributeoreto the entropy than the lower order terms.

Specifically, we have shown [36] that, upto the second order in the WKiBoapnation, the
brick wall entropy of four dimensional black holes can be expressed as

o
00 =+ 2k g (),
Pl

whereﬁ‘(“D)(,ssz) O MH” with n < 1. Whereas, in six dimensions, we find that the brick wall
entropy up to the second order has the form

o
S0 — 5, + () + F ) () log (62) ,
Pl

where¥ (o44) 0 oM and.Z 6D) (44) O /M with (n,m) < 1. Note that, while the brick wall entropy
in four dimensions depends only on the first and the second derivafities metric at the horizon,
in six dimensions, it depends on the third derivative as well. Itis tempting fwoz®that, at least in
even dimensions, the brick wall entropy will depend on as many as deasaif the metric as half
the number of spacetime dimensions! However, the black hole entropy isrdirtate invariant
concept. If the brick wall entropy depends on arbitrary derivativiethe metric functions at the
horizon, then it is not a priori evident that the resulting entropy will berdoate invariant. We
believe that this is an issue that needs to be addressed satisfactorily.

6.2 Comparison with results from other approaches

Power law and logarithmic corrections to the Bekenstein-Hawking entgpyhat we have
obtained in the brick wall approach has been encountered earlier in@liewapproaches to black
hole entropy. For instance, the Noether charge approach predicteeag@power law correction to
the Bekenstein-Hawking entropy [8]. However, unlike our approalcrein the brick wall entropy
can be completely expressed in terms of the metric and its first few derigatithe event horizon,
the Noether charge entropy can not be mapped to the horizon propdttieslso interesting to
note that, in the case of the four dimensional Reissner-Nordstrom bldekfbiolarge horizon area,
i. e. whenM > ¢, the brick wall entrop)S(Ff,\',D> [cf. Eg. (5.10)] reduces to

4aD) _ 27'[1/2 1 _ €§| %3/2 (6 1)
N Sy 15 @71/2 M2 ’ )
H
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Similar power law corrections arise on evaluating the entanglement entrapigloblack holes [17].
This behavior seem to suggest a possible relationship between the bitlakedel and the ap-
proach due to entanglement entropy. Another interesting feature is thaaef power law cor-
rections in case of four dimensional Schwarzschild black hole. It seernmliate that power
law corrections to the Bekenstein-Hawking entropy are related with thempecesof matter. The
logarithmic corrections that we have obtained as in Eq. (5.5) for the cabe dbur dimensional
Schwarzschild black hole has also been arrived at in other methodsasuhk approach through
conformal field theory [12], statistical fluctuations around thermal equulib{16] and spin foam
models [11]. However, it should be pointed out that the prefactor to theritbgnic term that we
obtain turns out to be different from the one that arises in the other apbes.

Our analysis unambiguously indicates that corrections to the Bekensteikittpentropy can
arise even in a semi-classical approach. Clearly, it will be worthwhile tanedeir analysis to the
case of rotating black holes. We intend to carry out such an exercise ime#rduture.

SSa is supported by the Council of Scientific & Industrial ResearchalrgiSh is supported
by the Marie Curie Incoming International Grant [IF-2006-039205.
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