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1. Introduction

Noncommmutativity & gravity. Heisenberg’s uncertainty principle together with Einstegen-
eral theory of relativity lead to the conclusion that thesslaal concept of spacetime loses its
meaning in the small. When measuring a spacetime coordmigliegreat accuracwy, there is an
uncertainty in momentum of the ordefd That is to say measuring small distances requires high
energies, which will curve locally the region of spacetinoaiywant to measure. When the gravi-
tational field becomes so strong as to prevent any signal éscaping that region the operational
meaning of this localization gets lost. The process of miaga spacetime coordinate to infinite
accuracy is thus as a matter of principle not possible.

It has been shown in a fundamental paper by Doplicher, Fredgn and Roberts [1] that the
above argument leads to uncertainty relations for the sipaeeoordinates which can be derived
from noncommuting spacetime coordingtesch as

XM, x'] =i6MY. (1.1)

One can then study so called called “noncommutative (NChiyuna field theories” on spaces with
such noncommuting coordinates; for basic reviews see 2.8].[ In NC field theories quantum
fluctuations of spacetime coordinates occur naturally.sTihis believed that these theories could
play an important réle on the way towards a quantum theoryadity. Recently, a specific realiza-
tion of this idea was published under the name of “emergemtommutative gravity,” see [4] and
[5-8]. There, matrix models of noncommutative gauge théescribe dynamical noncommutative
spaces. The main lesson learned is that gravity is alreaatgiced in noncommutative gauge the-
ories. There is no need to add new concepts. Here we discesiicpesults of this approach: We
study the successful coupling of fermions to the framewdrneergent noncommutative gravity.
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2. Matrix models and effective geometry

Consider the matrix model action
Stm=—TrY Y Y¥ Y¥ gaq Oty (2.1)

for
Oag = Oag  OF Qag = Naa (2.2)

in the Euclidean resp. Minkowski casgay should not be interpreted as a fixed, physical back-
ground metric, but rather as a prescription to fix the sigmatidere the “covariant coordinates”
Y2 for a= 1,2 3, are hermitian matrices or operators acting on some Hillpate 7. We will
denote the commutator of two matrices as

Y2, Y =ig2° (2.3)

so thatd?® ¢ L(.#) is an antihermitian matrix, which isotassumed to be constant here. We study
configurationsr@ (not necessarily solutions of the equation of motion) wiiiah be interpreted as
quantizations of a Poisson manifald7, 62°(y)) with general Poisson structu®(y). This de-
fines the geometrical background under consideration, ssehdially any (local) Poisson manifold
is a possible background®. In particular, we assume th&g° is small and well approximated by
the classical Poisson structu#&®(y) in a semi-classical expansion. More formally, this meaas th
there is an isomorphism of vector spaces

C( M) — o CL(H) (2.4)

where % (.#) denotes the space of functions o#f, and <7 is the algebra generated b, in-
terpreted as quantized algebra of functions. In partictMfacorresponds to a classical coordinate
function' y2 on.#. This can be used to define a star product&#). Moreover,Y? defines a
derivation one” via

Y2, ] ~i6%(y)db T (y). (2.5)

In this paper, we restrict ourselves to the “irreducibledea.e. we assume that is in some
sense dense in(.77’). Then any matrix (“function”) irL(.#’) can be expressed as a functiory8f
resp.y?. From the gauge theory point of view in Section 4, it means werestrict ourselves to
theU (1) case. This is most interesting for us since the UV/IR mixisee(Sect. 5) happens in the
tracel (1) sector. For the general case see [4, 8].

Scalars. To begin with, we consider the case of scalar fields i.e. h@amimatricesP coupled
to the matrix model (2.1). There it is seen most easily howdffective metric appears. The
only possibility to write down kinetic terms for matter fislds through commutatotgY?2, d] ~

1The coordinateg? are preferred ones since in their framg equalsd,y resp.nag. In other framesy,y will not
be constant.

2Throughout this papet; indicates the leading contribution in a semi-classicabesion in powers 0822,
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ieab(y)#w, and one is lead to the action

S0 — (2P TrguY 0]V, 0] ~ [ dyp(y) 6Py 7200) 75 0).  (26)

Here

G™(y) = 62(y) 0" (y)ged (2.7)

is the effective metric for the scalar fiedel The Poisson manifold naturally acquires a metric struc-
ture (. ,0%(y),G®(y)) determined by the Poisson structure. The metric is thus ndaimental
building block of the theory. We also used ¥r[ d*yp(y), where

p(y) = (detb®(y)) 72 = [Gup(y)V* =7 (=Akc(Y)) (2.8)

is the symplectic measure ¢n, 82°(y)) which can be naturally interpreted as non-commutative
scale/\ﬁc. After appropriate rescaling @&2°(y), this can be rewritten in covariant form

§®] = [ d'yG(y)apP3,p0 (2.9)
with the effective metric
G =|Ga[V*GP=p(y)GP, |G =1 (2.10)

being unimodular in the preferra@ coordinates.

Fermions. The most obvious action for a spinor which can be written dowthe matrix model
framework is
S= (@mPT@Y W) ~ [ dyp(y) Pirad™(y)apw (2.11)

ignoring possible nonabelian gauge fields here to simiéyrtotation. This is written for the case
of Minkowski signature, the Euclidean version involves th®ious replacemer¥ — W', This
defines the (matrix) Dirac operator

BW = ya[Y2 W] ~ iy,0%°(y)dpW. (2.12)
We can compare this with the standard covariant derivativefinors

BeommW =iy e} (dﬂ +Zap wﬁb) W (2.13)

where

Wt = i%ea" (Dye5> (2.14)

is the spin connection, arith, = i/4]ya, W] is the representation of the Lorentz algebra. Comparing

3In particular, fermions should also be in the adjoint, ottise they cannot acquire a kinetic term. This does not
rule out its applicability in particle physics, see e.g.][13
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(2.12) with (2.13), we observe again that in the geometryngdfby (2.7),

& (y) = 0*°(y)gep (2.15)

plays the role of a preferred vielbein. However this must beduwith great care, because the
distinction between the coordinate indgxand the Lorentz indea is lost in the special “gauge”
inherent in (2.15).

One notices that the spin connection does not appear in)(2vhich seems very strange at
first. In spite of this strange feature, the action (2.11)d®ad action for a fermion propagating in
the geometry defined b, To see this, recall that the spin connection determinesthewpinors
are rotated under parallel transport along a trajectoryvéver, the spin-connecticmf,1b can always
be eliminated (via parallel-transport resp. a suitableggathoice) along an open trajectory. Then
the conventional kinetic term (2.13) boils down to (2.11)hefefore in the point-particle limit,
the trajectory of a fermion with action (2.11) will follow pperly the geodesics of the mefric
Gab, albeit with a different rotation of the spin. Furthermotke induced gravitational action
obtained by integrating out the fermion in (2.11) indeeduces the expected Einstein-Hilbert term
[d* RG] A? at least for “on-shell geometries”, albeit with an unusuaierical coefficient and
an extra term depending an All this shows that (2.11) defines a reasonable action fanifens
in the background defined .

Equations of motion. So far we considered arbitrary background configuratiéhss long as
they admit a geometric interpretation. The equations ofenalerived from the action (2.1)

Y2, Y0 gag =0 =M 9M%,6™ g5 = 0 (2.16)

select on-shell geometries among all possible backgrowuds as the Moyal-Weyl quantum plane
(4.2). However since we are interested in the quantizatene,hwe will need general off-shell
configurations below.

3. Quantization and induced gravity

Next we study the quantization of our matrix model coupledetmions. In principle, the
guantization is defined in terms of a (“path”) integral oviénaatricesY? andW. In 4 dimensions,
we can only perform perturbative computations for the “gasgctor”Y?@, while the fermions can
be integrated out formally in terms of a determinant. Letamu$ here on the effective action at
one loop obtained by integrating out the fermionic fields,

e v = / dwdwe ¥ with Ty = —%Trlog 2. (3.1)

for a non-interacting fermionic field with action Eq. (2.11)

“for massless particles, the geodesic&g coincide with those 06,p,. Masses should be generated spontaneously,
which is not considered here.
5For the sake of rigor we work in Euclidean case now.
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Square of the Dirac operator and induced action. The square of the Dirac operator takes the
following form

BP0 = yap[Y2, [YP, W] ~ —yayp87°0c(6°994W) = —G*9.04W — a%dq W, (3.2)
with
a% = yay 0™ = —2i 5,,62°9.6°° + gap07°0. 6. (3.3)
? defines the quadratic form
Square= (22 TrWT D2 ~ / dUyp(y) W P2 — / A%y |G| VW p2W, (3.4)

which is very similar to the scalar action. In terms of thennodular metricG,p Eq. (2.10),Ssquare
can be written in standard covariant form

Ssquare= / dy\/|G| PP with DW= (GXW+ealW).  (35)
We now compute the effective action using
1 -~ - 1 ® 1 ~ 2\ 1
5Tr(log D2 —logl3) = —ETr/0 da— (e“';’z —e“%) e i (3.6)
whereA? denotes the cutoff foﬁ2 regularizing the divergence for small Now we can apply the

heat kernel expansion s
TreaP — ;(%)T/ﬁd“yan (y, '32) (3.7)

n=

where the Seeley-de Witt coefficierdg(y, bvz) are given by [14]

ao(y) = WUL
1 R(G|
& = —Gm (aan + OmQn — FﬁmQQ , (3.8)
Qm = %émn <eﬁaan—|—Fn) 5 (39)

where tr denotes the trace over the spinorial matrices. feetiwe action is therefore

My = Fan /d"’y <2tr(1)7\4+tr<$ 1+é"> 7\2+O(|097\)> : (3.10)

where t(1) = 4 assuming Dirac fermions. Everything is expressed in tesfrthe unimodular
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metric Gap, Which can be written in terms &ap using

R[G] = p(y) (R[G] +30g0 — ;Gabdaodba> ,

Ao = G®9,0,0 — 6.0,

re=G>rj
(o)
e 7V = p(y) = (detGan) ",
M2 =Gra3, = e r2—e9(go)G> (3.11)

Note the relative minus sign of the various terms in the éffecactionl"y compared with the
induced action due to a scalar field [5],

_i a ~4_} o ~
Mo = 167T2/d y( 2N\ 6R[G]/\ +O(|Og/\)>. (3.12)
hence 1
_ 4, N2
Nly+4lre = 167'[2/d yir&N“. (3.13)

This expresses the cancellation of the induced actionsadigerhions and bosons, apart from e
term. For the standard coupling of Dirac fermions to gragitycommutative spaces, one has [15]

which originates from an additional constant tem%R in P2,mm (Lichnerowicz’s formula). In
our case¢’ turns out to be somewhat modified due to the missing spin aiome nevertheless it
contains the appropriate curvature scalar plus an additterm, see Eq. (3.24).

Ricci scalar intermsof 6™. The curvature is given as usual by
Rabc® = bl ac— dal b+ M5l 9p— M 9a.- (3.15)
The Ricci scalar is then
R= G**REsc = G*° (bl 8o — dalfo-+ & By~ Tl Ba) (3.16)
By plugging in the explicit formula for metric tensor,
G™(y) = 8™(y)8"°(y)Gab (3.17)
one can express the Ricci scaiiin terms of8. By making use of the Jacobi identity,

0abe" + 00,5 + 0p03" = 0 (3.18)
0079 = — (0:0;7) (6MPO — MIGEP) (3.19)

and by exploiting relations coming from partial integratiseveral terms appearing in the compu-
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tation of tr& and R[é] are equivalefit After a rather lengthy computation, which can be found
in [6], one yields the following compact form for the Ricciedar in terms of the unimodular metric
éab

- 1 1
/ d*yRGIA? = e*a{éemk(aken;l) G" (31655) 6~ 5G™GP (9pbna) (daBs ) 0
1 1 ~
~5(06°) G (38!) + 5G™(m0) (910) }/\2. (3.20)

Evaluation of tr &. We also need to evaluate

tré = —trGa (daQb Q0 — FfabQ,> , (3.21)
where
Qm = 16 @+rm
m 2 mn
= % (GmnVaVbepa (‘9p9nb) — Gmn(9pG™") + 5m0) (3.22)

andd" = e ?a". For the computation of # we use again the Jacobi identity (3.18) and relations
from partial integration and we find:

ré = e 7{GIG™ (abrd) (416,) ™ - C™(A6) G (A 6,0) 6} (3.29)
Comparing with (3.20) fon2 regarded as constant cutoff &f, we can write this as

tré = —2R[G]— (3p0") G¥(9Byg) + G™ (Im0) (6h0)

eom

=" _2R[G] + G0 0,0, (3.24)

assuming on-shell geometries (2.16) in the last line. Tdrisitila applies for Dirac fermions, and
with an additional factor% for Weyl fermions. It is remarkable thatdris essentially given by
the appropriate curvature scala[lé], and up to a contribution from the dilaton-like scaling tact
p =€ 2. This is a very reasonable modification of the standard r¢3ul4), as desired and tells
us that Einstein-Hilbert action also emerges for fermidrena-loop.

4. Relation with gauge theory on R‘(_‘)

One motivation to study NC field theories comes from the fiaat NC spacetime coordinates
in the small tend to cure the UV divergencies. However, tippesedly removed divergencies reap-
pear in the infrared limip — 0. This effect is the notoriougV/IR mixingwhich spoils renormal-
izability [17]. In the framework of emergent noncommutatigravity the UV/IR mixing problem
of noncommutative gauge theories is understood in term$ ahduced gravity action. In order
to show this we want to interpret the fermionic action (2.44)action for a Dirac fermion on the
Moyal-Weyl quantum pIanR‘é coupled to &J (1) gauge field in the adjoint. This point of view is

5By means of these relations one can also check that the 48ti)is indeed hermitian.
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obtained by writing the general covariant coordinate resatrix Y2 as

Y& =X%+ 2. (4.1)
HereX? are generators of the Moyal-Weyl quantum plane, whichfyatis

X3 X" =i6%, (4.2)

where 62 is a constantantisymmetric tensor. These are particular solutions efatjuations of
motion (2.16). The effective geometry for the Moyal-Weydpt is flat, given by

g™ = 67°6"g g
¢ = pg®,  detg®=1
p = (detf®) =2 = |gap|* = Afc. (4.3)

Consider now the change of variables
A3(X) = —62°An(X) (4.4)

whereA, are hermitian matrices interpreted as smooth function]R%mThus we can write

Y2, f] = [X2+ &7 f] =i (%f +i[A, f]) =i62°Dy f, (4.5)

giving for the quadratic form (3.4)
Square = (202Tr Whap [ Y2, Y2, 0] |
- /d“xﬁ W yay82M6P"D,D W
_ /d“xqﬂ D2, (4.6)
This is an exact expression mﬁ where

b\éA = _ﬁyaybe_ame_anmDn = — "Y' DmDn, (4.7)

and )
P = (detgan) B 1 8%, {2, P} =26%. (4.8)

We now want to rewrite the geometrical results of Section 8imms of gauge theory o]Rg in
x-coordinates. To do this, note that most formulas of Se@iare not generally covariant, but only
valid in the preferreg-coordinates defined by the matrix models whgig= dap resp.gap = Nab-
Eqg. (4.1) defines the leading-order relation betwgandx coordinates,

Y2 =3 — 6%°A, + 0(6?). (4.9)
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See [6] for details of this change of variables. Let us moetzeaﬂenotez?a = d/0x2. The Poisson
tensor can be written in terms of thél) field strength as

i630(y) = [Ya,vb] — % _jgreghiFy,, (4.10)

whereFq is a rank two tensor ix coordinates oﬂRg. We also need the effective metric (2.7) in
x-coordinates,

G = (6% 696°IF) (67— 676" Fer) g (4.12)
We find for the one-loop induced action

My = /d“y (a0/~\4+a2/~\2+0<log/~\>)

1 4 PY) cbd= 325 72
— - 16”2/d VR G0 R, (4.12)

Finally, there is a nontrivial relation between the cuthfof the geometrical action and the cutoff
N of theu(1) gauge theory, which follows from the identity

Ssauare= Tr Wyapp [¥2, [¥2, @ / dyWp2w = / dy p PV yipz, . (4.13)
For the Lapacians this means
D= %WA- (4.14)
Since we implement the cutoffs using Schwinger parametiéoiz they are related as follows
N2 = %/\Z. (4.15)

This makes sense providedy)/p varies only on large scales respectively small momentaA,
which is our working assumption. We obtain as a final resultiie geometric one-loop effective
action expressed in terms of gauge theor)R@n

Mg = —4Tg— / dxpls Q"" §PIFap02Feg
p2 /\2

— 4.16
Nic 2 o

= Aot / ‘P PG Fab(P)Foa (— D)

wherep? = p;p; g!. This agrees precisely with the one-loop computation irgtugge theory point
of view obtained below. Note that the last term corresponds4 in (3.13).

5. Comparison with UV/IR mixing

In this section, we compare the geometrical form of the aug-leffective action obtained in
the previous section with the one-loop effective actionaotsd from the gauge theory point of

10
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view. The strategy is to apply first the concept of covariamrdinates to obtain a noncommutative
gauge theory coupled to fermions and compute thereaftayrtbdoop effective action. The result
is of course the same, which provides not only a nontriviagicktfor our geometrical interpretation,
but also sheds new light on the conditions to which extens#mei-classical analysis of the previous
section is valid. This generalizes the results of [5] to #retionic case. We find as expected that the
UV/IR mixing terms obtained by integrating out the fermi@me given by the induced geometrical
resp. gravitational action (3.10), in a suitable IR regimngparticular, we need an explicit, physical
momentum cutoff\.

Using the variables and conventions of the previous secti@action (2.11) can be exactly
rewritten adJ (1) gauge theory oiR%, which in the Euclidean case takes the form

SW] = 2m*Tr¥Ty[v?, W)
- / d*xPTi72(,9 + ig[Aa, P)) (5.1)
We introduce an explict coupling constaptand define a rescaled fermionic field
P = |Ga| 15 W (52)

in order to obtain the properly normalized effective meffi&; we will omit the tilde on¥ hence-
forth. Recall also that only (1) gauge fields are considered here, because only those aurcesp
to the nontrivial geometry considered in the previous secti

We need theéD(A?) contribution to the one-loop effective action obtained biegrating out
the fermionic field¥. While this computation has been discussed several tim#ititerature
[16—20], the known results are not accurate enough for ogse, i.e. in the regimg?, A < /\ﬁC
where the semiclassical geometry is expected to make séfesaeed to analyze carefully the IR
regime of the well-known effective cutoffes¢(p) (5.7) for non-planar graphs as— 0, keeping
A fixed. In this regime the non-planar diagrams almost comgiith the planar diagrams, and the
leading IR corrections due to the nonplanar diagrams qooresto the induced geometrical terms
in (3.10). This has not been considered in previous attetotsplain UV/IR mixing, e.g. in terms
of exchange of closed string modes [21, 22].

To proceed we use the fermionic Feynman rules and considdfdiinman diagram in Figure
1 corresponding to

1 2 ) a = 4 =T
My = —35Trlogho - % < / d*xp Wi [Aa, W] / d*yp Wvb[Ab,W]>
= —%TrlongJrFLp(A). (5.3)

The minus sign in front is due to the fermionic loop. This gred looks explicitly as follows

. d4p ~aa~b d*k 2kaky +kapp + pakb_gabk(k+ p)
My = —492/(2n)4Aa/(p)Au(—p)g g b/(2n)4 KK ((k+ p)- (k+ p))

% (e—ikie” P _ 1) (5.4)

11
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o

Figure 1. Fermionic one-loop diagram.

which is quite close to the bosonic case, using the notation
k-k=kk g  K=kkg'. (5.5)

An evaluation of the integral gives

4

o — _4r¢_gznf/ﬁAa/(p)AU( P) 6726"° (paPb — GabP - P)

8n2 WEE p Py , |A1-2) p p (5.6)

for Dirac fermions, where

1
/\gff o 1 2 :/\gff(p) (57)

is the “effective” cutoff for non-planar graphs, angc is defined in (4.3). To proceed we consider
the IR regime

LEANSS T (5.8)

Then bothA andA¢ are large, and we can use an asymptotic expansions for tiselBeasction

KO<2 %) <y+log(ﬁ)> +o</r(‘2| g(%)). (5.9)

Moreover, in the valid regimeA < /\12\10 one is allowed to expand the effective cutoff

4 /\6
Nott =N =P goa—+ Nt =N =P+ .. (5.10)
) e i e
We obtain our final result
1 g2 d4p ~ala — p2/\2
I AMg ~ = — dagh'b .
w+ (0] 4 167T2 (27_[)49 g b(p) ab/( p) —/\ﬁc ,
1 ¢ [ d% ==
- ZlenZ/ (271)4‘32 N2 p? G 20" Fab(p)Farty (— D) , (5.11)

wherep? = pap,g?. There are obvious modifications due to the appropriateresipa of A2 ceg f
one approaches the border of the IR regime (5.8).

12
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To compare this with the geometrical results, we must tak® account the different regu-
larizations used in the heat-kernel expansion (3.6) anbdeérabove one-loop computation. It was
shown in [5] that these regularizations agree if we repfateavith 2A? in the one-loop computa-
tion abové. We then find complete agreement with the result (4.16) nbthusing the geometrical
point of view. Notice in particular that the induced gratittaal action is nontrivial even in the case
of e.g.N = 1 supersymmetry. This is now understood in terms of induceadity, and full cancel-
lation is obtained only in the case Nf= 4 supersymmetry. This will be discussed below.

Cancellationsand supersymmetry Itis very interesting to compare the fermionic and the bason
contribution to the gravitational action. As is well-knovi6, 19], we note that the fermionic
contribution to the one-loop effective action in NC gaugeatty does not quite cancel the scalar
contribution, due to (5.11). This means that even in supensgtric cases some UV/IR mixing
may remain. From the geometrical point of view, this termgaesponds to a gravitational action
tr& A2 = —2R[G| A%+ ..., so that the cutoff\2 should be interpreted as effective gravitational con-
stanté. This is completely analogous to the commutative case, eviiner gravitational term (3.14)
is induced. The remaining UV/IR mixing term cancels onlyhe tase oN = 4 supersymmetry.
We can therefore identifﬁ\ as the scale dil = 4 SUSY breaking (assuming such a model), above
which the model is finite. These observations strongly ssigidpat for the model to be well-defined
at the quantum leveN = 4 SUSY is required above the gravity scale i.e. the Plandesddis is
realized by the IKKT model [10] on a NC background.

6. Discussion and outlook

In this paper, fermions are studied in the framework of em@rggoncommutative gravity, as
realized through matrix models of Yang-Mills type. The matnodel strongly suggests a partic-
ular fermionic term in the action, corresponding to a spedifiupling to a background geometry
with nontrivial metricéw. This coupling is similar to the standard coupling of fernsao a
gravitational background, except that the spin connectamshes in the preferred coordinates
associated with the matrix model.

The main result of this paper is that in spite of this unusealure, the resulting fermionic
action is very reasonable, and properly describes ferndonpled to emergent gravity. In the point
particle limit, fermions propagate along the approprigéettories, albeit with a different rotation
of the spin. At the quantum level, we find an induced grawtal action which includes the
expected Einstein-Hilbert term with a modified coefficiergwell as an additional term for a scalar
density reminiscent of a dilaton. There are further termilkanish for on-shell geometries. We
conclude that the framework of emergent gravity does exteriermions in a reasonable manner,
and might well provide - in a suitable extension - a physjcaiaible theory of gravity.

In a second part of the paper, we compare this induced gtiavigd action with the well-
known UV/IR mixing in NC gauge theory due to fermions. Gelfienag the results in [5] for
scalar fields, we find as expected that the UV/IR mixing candpéained precisely by the gravita-
tional point of view. This also provides a nice understagdir the fact that some UV/IR mixing

"while this was strictly speaking established only for thedmic case, the argument should extend to the fermionic
case without difficulties.

13
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remains in supersymmetric cases, and only disappeard fod supersymmetry. The reason is
that a gravitational action is induced even in supersymme#ses, except iN =4 SUSY. This in
turn leads to the conjecture that the gravitational consthauld be related to the scale Nf= 4
SUSY breaking, which is quite reasonable. All of these figdiauggest that the IKKT model on a
noncommutative background [9-12] should be the most piomisandidate for a realistic version
of emergent gravity. These issues will be discussed in metaldlsewhere.
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