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In this talk, | will give an overview of the theoretical statof staggered Lattice QCD with the
“fourth-root trick.” In this regularization of QCD, a sefade staggered quark field is used for
each physical flavor, and the inherent four-fold multiflichat comes with the use of staggered
fermions is removed by taking the fourth root of the stagdeateterminant for each flavor. At
nonzero lattice spacing, the resulting theory is nonlondl@ot unitary, but there are now strong
arguments that this disease is cured in the continuum lidmtaddition, the approach to the
continuum limit can be understood in detail in the framewofleffective field theories such as
staggered chiral perturbation theory.
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Rooted staggered fermions

1. Introduction

In the last few years, it has become possible to compute madyohic quantities of phe-
nomenological interest using Lattice QCD; for an overvidwezent results, see the talk by Kro-
nfeld at this conference [1]. Many of these results have lndained using gauge configurations
that include the effects of three light dynamical quarkswinich a (highly improved) staggered
Dirac operator is used to discretize the quark action. Steghfermions are attractive because
of the relatively low expense required for reaching verjiquark masses at very small lattice
spacings. For most of these results, the claim is that afgrstatistical and systematic, are under
control. However, as | will describe in more detail belowpnter to remove a spurious four-fold
redundancy inherent to staggered fermions, the fourth ebtihe fermion determinant for each
physical flavor is taken inside the integral over the gaude.fi&his raises the critical question
whether this method constitutes a valid regulator for Q@Dhls talk, | will describe the problem
in some detail, and then discuss the, in my view interestimyimportant, progress that has been
made in answering this question. This talk is meant to give\aview, rather than a complete
review of all work in this direction, as | do not have enoughapto be complete. For other recent
reviews, see Refs. [2, 3, 4, 5], which contain many more egifegs to other relevant work.

Let me first very briefly recount the origin of the four-folddrendancy. A naive nearest-
neighbor discretization of the free, massless Dirac operﬁtl(p) =ip, leads to an inverse lattice
propagator of the forma(is the lattice spacing)

Stp = Zé yusin(apy) . (1.1)
I

In addition to the expected zeromt= 0, S1(p) has fifteen other zeros with at least one component
of p equal torr/a on the Brillouin zone, from which it follows that this latédermion describes
sixteen massless fermions in the continuum limit. This iexample of the well-known species
doubling problem. There is a deep reason for the occurrehtieese doublers in terms of the
axial anomaly: a regulated theory with exact chiral symgnétas to produce an anomaly-free
representation in the continuum limit [6].

Staggered fermions [7] reduce this multiplicity by four. €jhare constructed from naive
lattice fermions by dropping the Dirac index, and repladingy-matrices by judiciously chosen,
x-dependent phases. This reduces the sixteen-fold doublmépur-fold doubling. In other words,
each staggered fermion describes four degenerate rstatiflavors in the continuum limit, which
we will henceforth refer to as the four “tastes” of each stagd fermion. The emergence of this
continuum limit, which carries over to the interacting gaisea consequence of lattice symme-
tries and dimensional analysis: lattice symmetries guaeathat a continuum limit with SO(3,1)
Lorentz and SU(4)x SU(4)x chiral “taste” symmetry is obtained without any tuning oé thction
[8]. A particularly important lattice symmetry is the U(Xahsformation that rotates the fermion
fields on even and odd lattice sites with opposite phasedl f:l$/mmetry”) [9], which is an exact
axial symmetry, broken by a (single-site) mass term.

In practice, one uses the following method for simulatingDR®ith three light flavors. A
separate staggered field is introduced for each physicadrflavith single-site mass terms for
each, with masses,, my andms. Each of these flavors thus comes in four tastes, and the the-
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ory would thus contain four up, four down and four strangerksian the continuum limit, with a
U(4),xU(4)q x U(4)s taste symmetry. To eliminate this unphysical multiplicitye fourth root of

each staggered determinant is taken, motivated by theattigeT that, in the continuum limit, the
staggered determinant should factorize as [10]

Det(Dstag) ~ Det'(Deont) - (1.2)

Since for allm# 0, De{Dstag) > O (this determinant depends only pn| because ot (1), sym-
metry), it is clear that the positive fourth root should bketa and that the resulting quark mass
mg O Im|.1 This, then, constitutes a regularization of three-flavorDQ«dth all quark masses posi-
tive.2 The topic of this talk is the validity of this regularization

2. The problem

First, let us consider a continuum theory with exact U(4}easymmetry,i.e., with four
fermions with equal positive quark masses. In this casecandake the fourth root of the fermion
determinant, and doing so reduces the partition functighaba of theory with one flavol; = 1.

In this rooted theory, one still has access to correlatiorctions with all four tastes on the external
lines, e.g, correlation functions of the fifteen pions of the four-&asteory. It is thus interesting to
ask in exactly what sense taking fourth root reduces the pumiipions from fifteen to none.

The key observation is that, since rooting reduces the nuwgfteea quarks from four to one,
the correct number for thid; = 1 theory, it is possible to construct consistent projediono the
physical, unitary one-flavor theory [12]. | will illustratais with an example in the meson sector.

For this, it is useful to describe rooting in terms of the replrule: if we taken, copies of
a U(4)-taste fermion field, so that the four-taste fermiotedainant appears raised to theth
power, then continuingn, — 1/4 corrresponds to taking the fourth root. Armed with thisltoo
let us consider, for example, the two-pion intermediatéesta the taste-singlet scalar two-point
function in chiral perturbation theory (ChPT) [13, 14]. Bledwo-pion states produce a cut starting
at 2m,;, and in the theory witm, replicas, the “strength” of this cut is t$— 1, because that is the
number of pions in the theory with replicas, which has Sly4n;) x SUr(4n;) chiral taste-replica
symmetry for any positive intege. If we now continuen, — 1/4 (see also Sec. 5 below), we
see that this factor vanishes, and the two-pion cut disappeas it should; this follows from taste
symmetry. Our example demonstrates how the theory is ynitarn, = N¢ /4 for any positive
integerNs even ifNs < 4, despite the presence of “too many” pions in the rootedriheo

On the lattice, taste symmetry is broken to a much smallscrelie group, and the argument
above no longer holds. This raises three questions that Weomisider in the rest of this talk:

1) Isrooted staggered QCD a regularization like any ottrampt? The answer is no, the theory
is nonlocal and nonunitary at# 0.

2) Can the continuum limit be taken, and is it in the correcversality class? Here the answer
is most likely yes, and we will briefly review the renormatipa-group (RG) based argument
supporting this claim [15].

1Quark mass renormalization is multiplicative [8].
2For a discussion of negative quark mass in the context of adimensional one-flavor theory, see Ref. [11].
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3) But this is not the end of the story. We worka~ 0, and scaling violations, while small,
are still significant. Hence, in actual computations, theedses are present, and one needs
effective-field theory (EFT) techniques to parameterizenibnlocal effects (in addition to the
need to control continuum and chiral extrapolations). Thestjon is whether such an EFT
framework exists. The claim is that it is provided by “StaggeChPT plus the replica rule,”
or rSChPT for short [16]. Two related, but different derigas have been given: The first
derivation is entirely within the ChPT framework, and stavith the observation that rooting
works trivially for a theory withfour degenerate staggered fermions, anNs = 4 theory.
One then moves to the nondegenerate case by expanding dhmuddgenerate case. This
allows one, under certain assumptions, to decouple one @ afithe fermions, thus arriving
at the caseBl; =1, 2, or 3 [13]. The other is a direct derivation from the RGQrfeavork of
Ref. [15] which we will describe below.

3. Nonlocality and nonunitarity from taste-symmetry breaking.

Taste symmetry is broken on the lattice, and we may thus thalistaggered Dirac operator
into two partsDgag= D ® 14+ aA, with 14 the unit matrix in taste space, andhe taste-breaking
part (with tgaste(A) = 0). The taste-breaking part vanishes linearly waith the classical continuum
limit, which is why | factored out the explicit facta. It follows that

log Det(Dstag) = 4log DetD) +logDet(1+ D 'ah) . (3.1)

While bothD andaA are local, clearlyp~'aA is not! This means that taste breaking, while local at
the level of the action, has nonlocal consequences for tiisiggh Indeed, the second term on the
right breaks taste symmetry, and lifts the degeneracy ofifieen pions of the theory defined by
D ® 14. The pion spectra of thBstagandD 14 theories do not match. From this observation, it is
easy to prove that the rooted theory is nonloca #t0 [17].

Lowest-order SChPT gives the pion masses of the staggezedyths

(nﬁ[)z = Brn]uark'i‘ cAaz/\éCD s (3.2)

in which the indexA labels the different pions, which fall into irreps of the exaemnant of
taste symmetry on the lattice [18], with a different valuecbffor each irrep> The pion-mass
behavior predicted by Eq. (3.2) is clearly seen in numesgallations [19]. Figure 1 shows the
nondegeneracy of the various different pions, with theoteriabels corresponding to values of the
index A (for details, we refer to Ref. [19]), and Fig. 2 shows how thsté splittings scale with the
lattice spacingr( is a quantity used to set the scale).

This pattern implies that the; = 1 “pion counting” argument given at the beginning of the
previous section for the continuum rooted theory is vialaia the lattice. Exact cancellations that
occurred because of full SUtd taste symmetry no longer occur [14, 13], andG(@?) two-pion
cut survives in the taste-singlet two-point function fpr= 1/4. This example demonstrates that
indeed rooted staggered fermions are not unitaey-a0, and that this violation of unitarity occurs
at physical scales, exhibiting the nonlocality of the tlyeor

3There is only one exact Goldstone boson, for whith= 0 in Eq. (3.2), as a consequencdfl) symmetry.
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Figure 1: Squared pion masses as a function Figure 2: Taste splitting among the pions as a
of the light quark mass foa = 0.12 fm (from function of lattice spacing (from Ref. [19]Mg
Ref. [19]). is the mass of the exact Goldstone boson.

While this discussion confirms the sickness of the rootedrthata # 0, it teaches us several
important things. First, if the taste-breaking operadris irrelevant (in the sense of the RG),
the nonlocal and nonunitary behavior disappears in therann limit. In the unrooted theory,
aA is indeed irrelevant, and taste symmetry is restored indhéirmuum limit. However, this is not
obvious in the rooted theory, since it requires the extensfdR G techniques to the nonlocal theory
ata# 0. We will investigate this in the next section.

Another important observation is that pion masses are geddny two different IR scales: the
physical quark mass, and the unphysical taste spIittir(ug/\éCD)2 that leads to unitarity violations
in thea = 0 rooted theory. It is thus clear that (a) the limit— 0 ata # 0 is unphysical [20], and
(b) that the limita — 0 has to be taken before continuation to Minkowski space.

4. Continuum limit: arenor malization-group framework.

Itis natural to study the approach of the continuum limitinRG framework. First, it gives us
a tool for a precise definition of the continuum limit, makibgossible to define what is meant by
the intuitive factorization of the staggered determin&d, (1.2). Second, in the unrooted theory,
one expects that low-lying (IR) eigenvalues form taste quiléts whera becomes small, while
this won’t happen for the UV (cutoff) eigenvalues. Here RGcling helps: it gets rid of the UV
eigenvalue$.

A simple hypercubic blocking scheme can be set up [15] in Whine takes the “coarse”
lattice spacinga: < 1/Aqcp arbitrarily small but fixed, and the fine lattice spaciagto zero:
after n blocking steps, the relation between the two lattice sggcis given bya, = 2"as. The
usual universality arguments imply that this will lead te #xpected continuum limit for unrooted
staggered fermions because they are local, and this is wdhatilvassume in the rest of this talk.

4For numerical investigations of staggered eigenvaluesRsg. [21].
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In contrast, no direct RG blocking can be defined for the mhdleory, since the rooted theory is
not formulated in terms of a path integral: the fourth rootaisen inside the integral over gauge
fields after the fermionic integral has been performed. H@wneét is possible to construct a bridge
between the unrooted and rooted theory at each blocking thiege “reweighted” theories will be
constructed to have the sarag— 0 theory as the staggered theory, but they also will havetexac
taste symmetry [15].

This works as follows. After each blocking step, we split {bocked) staggered Dirac op-
eratorDgstagn = Dn ® 14 + asAn, wWith asAp the taste-breaking part, just as before Eq. (3.The
unrootedstaggered theory defined Bagn and the taste-invariant theory definedby® 14 have
the same continuum limit, becauagh,, will scale as expected in this case. The theory defined by
Dnh ® 14 has exact taste symmetry, and is local onré lattice. This theory can thus be rooted,
and one obtains lcal one-taste theory with partition function

Zreweigh_ / dHgaugeDet(Dn) . 4.1)

The claim is now that fon — oo (at fixedac) this local theory coincides with the nonlocal theory
Zl’OOt = /dugaugeDetJ-/4(Dstagn) . (42)

Indeed, if||asAn|| <af/ac, one has that

Det/4(Dn ® 14+ asAn) = Det(Dy) exp [%tr log (14 + DnlafAn)] — Det(Dy) <1+ o) <§—fm> ) .
%* (4.3)
For this to work, it is necessary thatA, scales likeas /a; on an ensemble. We need this scaling
between fas and l/a. <« 1/a¢, and, since lac > Aqcp, this scaling should be calculable in
perturbation theory. The conjecture here is that one cgnorelthis to work, because it concerns
the scaling of a local operatoff), in a renormalizable theofy.
We may rephrase the RG argument as follows [3]:

The starting point is thadi; A, scales likeas in the unrooted staggered theory, because this
theory is local. It has to, if the expected continuum limit flois theory exists.

Thereforeas A, scales likeas in the four-taste reweighted theory definedy 14, which
is U(4) taste invariant and local on theh lattice.

One then expects thatA, scales likeas in the one-tastaeweighted theory; because of the
exact taste symmetry of reweighted theories, the one-tasteighted theory is still local.

Finally, one may reconstruct the rooted staggered theom the one-taste reweighted the-
ory, using the expansion (4.3).

50One can “postpone” the integration over the gauge fields erbtbcked lattices, so that the fermion integration
remains gaussian at each step [15].
6There is no space for a detailed discussion of this pointwfich we refer to Ref. [15].
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We end this section with the comment that, clearly, a necgsgandition for all this to work is
that rooting works in perturbation theory. Indeed, it dogsthe theory withN¢ flavors andn,
replicas, the total number of quarks on any closed loop islegudN;n;, which, forn, = 1/4
(which corresponds to taking the fourth root of each offthestaggered determinants) is precisely
equal toN; [22, 2]. It follows that indeed the rooted theory is (pertatiely) renormalizable, and
thus standard power counting, according to whagh, is irrelevant, applies.

5. Staggered ChPT from the RG approach.

After reviewing the RG-based argument for the validity obting in the continuum limit,
we now use this framework to derive the existence of an EFRfTidrmork for the rooted staggered
theory at nonzer@, thus addressing the concern expressed in the third qoestiSec. 2 [23].
EFTs such as the Symanzik effective theory (SET) [24] andTC&&count for lattice artifacts
through a systematic expansionangcp. An example may illustrate this as follows. The taste
breaking af # 0 leads to taste-breaking four-fermion operators in thectiffe continuum theory,
much like “new physics” at a higher scale leads (for exameffective four-fermion operators
to be added to the Standard Model action. The “new physiceg Isethe taste (and rotational)
symmetry breaking in the underlying lattice theory. Fotamge, the SET for the staggered theory
contains an operator of the form

& (Wréuési) (Wrévésd) +he. — 226 &2E &2 +he. (5.1)

in which theé, are a set of 4 4 y-matrices acting in taste space. On the right-hand sideved ga
the translation of this four-fermion operator into ChPTiénms of the nonlinear pion fiel. Of
course, all such operators, and their translation into ChBVe to be systematically classified [16].

The key assumption on which the existence of EFTs is foursititht the underlying theory, in
this case, the lattice theory, is local. Since the rootegigeeed theory is not local, the construction
of EFTs like the SET and ChPT along the lines described alsowetiautomatic. The question is
thus whether the construction of a SET and staggered ChPbeartended to rooted staggered
QCD.

The replica rule of Sec. 2 gives us an intuitive idea of whaddp but there is a catch. One
starts with a theory witn, staggered fermions, with, a positive integer. One constructs the
desired EFT, and simply continues— N /4 in this EFT/ since this is precisely how one obtains
the theory withN¢ flavors from staggered QCD through rooting Nif itself is not a multiple of
four). In other words, one continues the EFT from integen@alofn,, where the underlying theory
is local, to quarter-integer values. This should work far &xplicit dependence am that comes
from calculating diagrams with loops in the EFT. The cat¢ihéasvever, that the EFT dependsmn
not only through loops, but also through the coupling camstéhat multiply the operators which
build up the EFT. As long as: is integer, these coupling constants are uniquely deteany the
underlying local theory. But for quarter-integer valuds\t have to be obtained by continuation,
and a unique continuation off the positive integers doeserist. Moreover, it might happen that
the continuation will encounter a singularity preciselynat N¢ /4. All this implies that we need

1 will restrict the discussion tdl; < 4 degenerate flavors; the generalization to nondegenersseas is obvious.
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more information about the dependencenpiof the correlation functions of the underlying lattice
theory.

This is where the RG framework of the previous section comed-irst, taken, a positive
integer, and carry out RG blocking steps. The resulting theory has a partition tionc

Z(n) = /dIJgaugeDepr(Dstagn) . (5.2)
Now, we generalize this theory by replacing (recBliagn = Dn ® 14 asAn) [23]

Det" (D, ® 1+tasAy)

Det™ (Dstagn) - DePS(Dn) Det"(Dh®1)

(5.3)

Hereng is the desired number of physical flavors (with a given quaalss), and we thus neeg/4
staggered quarks. At this point, however, we still kagmteger, and not necessarily equahtg4.
Note the new “interpolating” parameterWe make the following observations:

- Forng=4n; andt = 1 this is the staggered theory withreplicas, hence the right-hand side
of Eq. (5.3) indeed generalizes the theory (5.2);

- Fort =0 this is the (local') reweighted, taste-invariant theoithwins taste-singlet fermions;

- Forns # 4n, (andt #£ 0), this is a partially quenched theory [22], in which theedgtinant
in the denominator is obtained from a path integral over &fhquarks with oppositei.€.,
bosonic) statistics.

As long asn, andng are positive integers, and for atwthis defines a local, but partially quenched
theory. Our key assumption will be that for such theories €fke the SET and ChPT exiét.
What this setup buys us is the following. Expanding the deit®ant ratio in Eq. (5.3) using

Det* (D, ® 1+tasAp)
Det"(D,®1)

Det’s(Dy) = Det™(Dy) exp[n; Trlog (1+t(D,*®@ Dasd,)] ,  (5.4)
one sees that, in this expansion, the powen,ak smaller than the power of which, in turn, is
smaller than or equal to the powerayfto which we expand. It follows that all correlation funct&on
of the theory, when expanded to some fixed ordessinare polynomialin n,! Since this is true
in the underlying lattice theory, it has to be true in any EEpresenting this theory, and we may
thus continuen, to ng/4 in the EFT. In the end, we may also set 1, thus arriving at the EFT for
the original staggered theory with replicas, but now for ang, = ns/4, with ns a positive integer.
The correctness of rISChPT thus follows directly from the R§aiment that supports the conjecture
that rooted staggered fermions constitute a regularizatfdQCD in the correct universality class.
Note that the argument sketched above does not imply thatawe to actually perform the
continuation off integer values of explicitly. The point is that our argument proves that thieiga
of the coupling constants of the EFT are uniquely determimethe underlying lattice theory. It
follows that the desired values (thosenat= ns/4 andt = 1) can then be determined by fits to the
numerically computed correlation functions of the rooteelry itself.

8This has become “standard lore” in lattice gauge theory, thede is now rather extensive numerical evidence
supporting the validity of this assumption. This point he®deen emphasized in Refs. [13, 2].
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One may ask why this approach does not imply that the theogybwaalefined forany (real)
value ofn,. The key point here is that, as should be clear from the comtmexample at the start
of Sec. 2, only fom, = ng/4 with positive integens the continuum limit corresponds to a unitary
theory? A corollary is that rSChPT should reproduce the sicknesktieeaooted staggered theory
ata # 0, and indeed it does. A nontrivial test of this was perforrmeRef. [14], in which theag
and fg two-point functions were fitted to rSChPT. The values of lemergy constants found with
this fit are in good agreement with those fitted from pion armehka&asses and decay constants.

6. Conclusions

While | have only been able to give a very schematic overvieygame of) the arguments, |
conclude that, while at nonzero lattice spacing rootedgeteeyl QCD is nonunitary, it is very likely
to have the correct continuum limit. The RG-based argumémisarticular, tie the validity of the
rooted theory very strongly to the — uncontested — validityhe local, unrooted theory.

In addition, | have shown how one can derive EFTs, such as PSClhich are valid at
a# 0. This is necessary both because of the fact that scalidgtians, while small, are not
negligible at present, and also in order to test our undedgig of the nonphysical effects of rooting
numerically. The validity of rSChPT makes it possible to domerical computations with pion
masses down tm,2T ~ azA‘(‘QCD, which is crucial, with present resources, for reliable@xolations
to the physical values of the up and down quark masses. | esizghthat, since rSChPT follows
directly from the RG argument for rooted staggered QCD, fitawmerical data using rSChPT
constitute direct tests of this argument for the validityadting. An interesting test in this respect
is an rSChPT fit in whictn, was kept as a free parameter in the fit, yielding= 0.28(4) [25].

In conclusion, there is now very good theoretical and nuca¢gvidence that using the fourth-
root trick works, despite the fact that far£ O the theory is sick. There is at present no valid
argument that the fourth root trick fails (see the Appendixgn additional comment).
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Appendix

The only published arguments against rooting are thoseaitZ(Ref. [26] and refs. therein).
I will not revisit the discussion of these arguments hera@ragince they have been proven incorrect
[12, 4] in all their incarnations. Indeed, none of our dedibrguments refuting his claims have
been addressed by Creutz; in Ref. [26] they are simply ighdremphasize that refuting Creutz’s
arguments by itself does not prove rooting to be correct,ldrale reviewed the current status of
the evidence for the validity of rooting in this talk.

9Perturbative renormalizability holds indeed for any



Rooted staggered fermions

References

[1] A. S. Kronfeld, review at this conference.

[2] S.R. Sharpe, POBAT2006, 022 (2006) [arXiv:hep-lat/0610094].

[3] C. Bernard, M. Golterman and Y. Shamir, PD&T 2006, 205 (2006) [arXiv:hep-lat/0610003].
[4] A.S. Kronfeld, PoS.AT2007, 016 (2007) [arXiv:0711.0699 [hep-lat]].

[5] S. Dirr, PoS.AT2005, 021 (2006) [arXiv:hep-lat/0509026].

[6] L.H. Karsten and J. Smit, Nucl. Phys.183, 103 (1981); H. B. Nielsen and M. Ninomiya, Phys. Lett.
B 105, 219 (1981); Nucl. Phys. B93, 173 (1981).

[7] J. B. Kogut and L. Susskind, Phys. RevlD, 395 (1975); T. Bankst al,, Phys. Rev. 015, 1111
(1977); L. Susskind, Phys. Rev. I8, 3031 (1977); H. S. Sharatchandra, H. J. Thun and P. Weisz,
Nucl. Phys. B192, 205 (1981).

[8] M. Golterman and J. Smit, Nucl. Phys.Z85, 61 (1984).
[9] N. Kawamoto and J. Smit, Nucl. Phys.182, 100 (1981).
[10] E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys180, 734 (1981).
[11] S. Dirrand C. Hoelbling, Phys. Rev.73, 014513 (2006) [arXiv:hep-lat/0604005].

[12] C. Bernard, M. Golterman, Y. Shamir and S. R. SharpesPhgtt. B649, 235 (2007)
[arXiv:hep-1at/0603027]; Phys. Rev. T¥, 114504 (2008) [arXiv:0711.0696]; Phys. Revi/B,
078502 (2008) [arXiv:0808.2056]; D. H. Adams, Phys. ReW 105024 (2008) [arXiv:0802.3029].

[13] C. Bernard, Phys. Rev. 28, 114503 (2006) [arXiv:hep-lat/0603011].

[14] S. Prelovsek, Phys. Rev. T3, 014506 (2006) [arXiv:hep-lat/0510080]; C. W. Bernard ECDeTar,
Z.Fu and S. Prelovsek, PAAT 2006, 173 (2006) [arXiv:hep-lat/0610031]; Phys. Rev7B 094504
(2007) [arXiv:0707.2402].

[15] Y. Shamir, Phys. Rev. @1, 034509 (2005) [arXiv:hep-lat/0412014].

[16] W. J. Lee and S. R. Sharpe, Phys. Re¥@)114503 (1999) [arXiv:hep-lat/9905023]; C. Aubin and
C. Bernard, Phys. Rev. B8, 034014 (2003) [arXiv:hep-1at/0304014]; 074011 (2003)
[arXiv:hep-lat/0306026]; Nucl. Phys. B (Proc. Suppl.) 1280, 182(2004) [arXiv:hep-lat:0308036];
S. R. Sharpe and R. S. Van de Water, Phys. Rek1,[114505 (2005) [arXiv:hep-lat/0409018].

[17] C. Bernard, M. Golterman and Y. Shamir, Phys. Rev.3114511 (2006) [arXiv:hep-lat/0604017].
[18] M. F. L. Golterman, Nucl. Phys. B73, 663 (1986).
[19] C. Bernarckt al.[MILC Collaboration], PoS_ AT 2006, 163 (2006) [arXiv:hep-lat/0609053].

[20] S. Dirrand C. Hoelbling, Phys. Rev. T2, 054501 (2005) [arXiv:hep-lat/0411022]; C. Bernard,
Phys. Rev. Dr1, 094020 (2005) [arXiv:hep-lat/0412030].

[21] E. Follana, A. Hart and C. T. H. Davies, Phys. Rev. L@%.241601 (2004) [hep-lat/0406010];
S. Dirr, C. Hoelbling and U. Wenger, Phys. Rev/@ 094502 (2004) [hep-lat/0406027].

[22] C. W. Bernard and M. F. L. Golterman, Phys. Rev®) 486 (1994) [arXiv:hep-lat/9306005].
[23] C. Bernard, M. Golterman and Y. Shamir, Phys. Rev.D074505 (2008) [arXiv:0712.2560].
[24] K. Symanzik, Nucl. Phys. B26, 187 (1983).

[25] C. Bernarcet al.[MILC Collaboration], PoS. AT2007, 090 (2007) [arXiv:0710.1118 [hep-lat]].
[26] M. Creutz, this conference [arXiv:0810.4526 [hefd]lat

10



