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1. Infrared behaviour of Landau gaugeYang-Mills theory

Confinement, th&Ja(1) anomaly, and dynamical chiral symmetry breaking are swgzptsbe
properties of infrared QCD. Despite the progress achiavedi understanding of these phenomena
the underlying mechanisms as well as possible interrelati@tween them are not yet uncovered.
This talk aims at summarizing what we can learn from QCD Gfagentions in the Landau gauge
about these topics.

Explaining quark confinement, and hereby especially etitrgthe linearly rising static quark-
antiquark potential and relating its properties to QCD degrof freedom, has been the main ob-
jective of many quite different studies. In ref. [1] some loés$e pictures where quark confinement
is related to

the condensation of chromomagnetic monopoles (e.g. [2, 3])
the percolation of center vortices(e.g. [4]),
the AdS / QCD correspondence (e.g. [5]),
the Gribov-Zwanziger scenario in Coulomb gauge (e.g. [,0f]
the infrared behaviour of Landau gauge Green functions,[80P

have been briefly reviewed. These explanations for confineare seemingly different but there
are surprising relations between them which are not yetnstmizd. Given the current status one
has to note that these pictures are definitely not mutuatijusive but simply reveal only different
aspects of the confinement phenomenon. A similar statenmetiieorelation between seemingly
different scenarios is definitely true when consideringWaél) anomaly, see.g. the discussion
in ref. [11]. This should be kept in mind when in the followittge results based on investigations
of Landau gauge Green functions are presented.

Employing Green functions dynamical chiral symmetry bmegkreflects itself directly in
terms of the quark propagator, see refs. [8, 9, 12, 13] areterfes therein. However, as we
have demonstrated recently this picture is incomplete @sds not take into account the effects of
dynamical chiral symmetry breaking on highepoint functions [14, 15, 16]. This issue will be
discussed in detail in this talk. To derive it one needs fiostia insight into the infrared behaviour
of gluons and ghosts.

1.1 Infrared exponents of gluons and ghosts

Figure 1: The Dyson-Schwinger equation for the ghost-gluon vertex.

The possibly best starting point for the investigation @ thfrared behaviour of gluons and
ghosts is given by the Dyson-Schwinger equation for the ghlo®n vertex function, see fig. 1.
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(NB: A MATHEMATICA package to derive Dyson-Schwinger equais can be found in [17].) In
the Landau gauge the gluon propagator is transverse, arefdreone can employ the relation

luDpy(l —a) = quDpv(l —q), (1.1)

to conclude that the ghost-gluon vertex stays finite wherottigoing ghost momentum vanishes,
i.e. whenq, — 0 [18]. This argument is valid to all orders in perturbatitwedry, a truely non-
perturbative justification of the infrared finiteness okthertex has been given in refs. [19, 20, 21].
Knowing this property of the ghost-gluon vertex the DysatmBinger equation for the ghost
propagator, see fig. 2, can be analysed. The only unknowridmscin the deep infrared are the
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Figure 2: The Dyson-Schwinger equation for the ghost propagator.

gluon and the ghost propagators, parameterized in thedeaciidomain as

k2 kK, ky
Dy (k) = 257 (qw— s ) Do(k) = ~ ) (1.2)

In Landau gauge these propagators are best described byvaraant functionsz(k?) andG(k?),
respectively. As solutions of renormalized equationssetfeinctions depend also on the renormal-
ization scaleu. Furthermore, assuming that QCD Green functions can beneeplain asymptotic
series, the integral in the ghost Dyson—-Schwinger equatgmnbe split up in three pieces: an
infrared integral, an ultraviolet integral, and an expi@sgor the ghost wave function renormal-
ization. Hereby it is the resulting equation for the latteaqtity which allows one to extract definite
information [22] without using any truncation or ansatz.

Recently it became clear that there are two distinct typesobftions, see ref. [23] and ref-
erences therein. In this talk we will focus on the so-calledling solution where the infrared
behaviour of the gluon and ghost propagators is given by ptaves. The corresponding expo-
nents are uniquely related such that the gluon exponentnigsitivo times the ghost exponent [24].
As we will see later on this implies an infrared fixed point flee corresponding running coupling.
The signs of the exponents are such that the gluon propagatdrared suppressed as compared
to the one for a free patrticle, the ghost propagator is iaffanhanced.

+1/6% +1/2 +1/2

Figure 3: The Dyson-Schwinger equation for the 3-gluon vertex.
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Using this infrared power laws for the Yang-Mills propagatone can infer the infrared be-
haviour of highem-point functions. To this end thepoint Dyson-Schwinger equations have been
studied in a skeleton expansiare. a loop expansion using dressed propagators and vertices. Fu
thermore, an asymptotic expansion has been applied toialltpely divergent Green functions
[25]. As an example consider the Dyson-Schwinger equatiothie 3-gluon vertex which is dia-
grammatically represented in fig. 3. Its skeleton expanser fig. 4, can be constructed via the
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Figure 4: An example for the skeleton expansion of the 3-gluon vertex.

(@ (b)

insertions given in fig. 5. These insertions have vanishirigared anomalous dimensions which
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Figure 5: Insertions to reconstruct higher orders in the skeletomesjon.

implies that the resulting higher order terms feature theesmfrared scaling. Based on this the
following general infrared behaviour for one-particlesitucible Green functions withnzxternal
ghost legs andh external gluon legs can be derived [25, 26]:

rn,m( p2) ~ (pZ)(n—m)K-i-(l—n)(d/Z—Z) (1'3)
wherek is one yet undetermined parameter, drid the space-time dimension.
Here two remarks are in order: First, exploiting Dyson-Sicigerand Exact Renormalization

Group Equations one can show that this infrared solutiomique [27]. Second, there are addi-
tional divergences when only some of the momenta ohtpeint functions are vanishing [28].

1.2 Infrared fixed point of the running coupling in the Yang-Mills sector
The infrared solutions (1.3) include
G(p?) ~ ()7, Z(P*) ~ (P TH(p*) ~ (p)" %, TR ~(pP)™. (14
This implies that the running couplings related to thes¢exeiunctions possess an infrared fixed
point:

a9 (2) = a, GX(P?) Z(PP) ~ %@1—9" a®(p?) = a, [F¥(p?)2Z3(p?) ~ Colr:lsﬁg’
c C
cons;
a4g(p2) = ay r4g(p2)22(p2) ~ N Eg (1.5)
C

The infrared value of the coupling related to the ghost-gluertex can be computed to be [19, 29]:
AnT(3-2k)r(3+K)r(1+K)
6N r2(2—k)r(2k)

This yields a9"9'(0) = 2.972 for N = 3 andk = (93— 1/1201)/98 ~ 0.595353, which is the
value obtained with a bare ghost-gluon vertex.

ad9'(0) = (1.6)
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1.3 Gluon confinement by positivity violation for the gluon propagator

Positivity violation for a propagator entails that the esponding field is not related to an
asymptotic state and thus to a particle. In the cases of glooe can infer gluon confinement
from such a scenario, seeg. [30] and references therein. Therefore positivity viaatiof the
propagator of transverse gluons has been for a long timejaatare which has been convincingly
verified by now, [31, 32] as well as references therein. Thscbieature is hereby the infrared
suppression of transverse gluons caused by the infraretheament of ghosts. Being related to
the confinement of tranverse gluons [30] it is certainly Waa have a closer look at the underlying
analytic structure of the gluon propagator.

As the infrared exponert in the infrared power laws is an irrational number this iragli
already that the gluon propagator possesses a cut on théveegsl p? axis. It is possible to
fit the solution for the gluon propagator accurately withimitoducing further singularities in the
complexp? plane [31]:

2

p
Zit(p?) =W | 5
I /\(ZJCD + p?

2K
) (o (p?) " (1.7)
Herebyw is a normalization parameter, anpd= (—13N; + 4Nt )/(22N; — 4N¢) is the one-loop
value for the anomalous dimension of the gluon propagatoe rlinning coupling is expressed as

[34]:

o 0s(0) 4w P L -
iy G0 am . 18)
fit (P°) 1+ pz//\%CD Bo /\CZJCD + p? |n(p2//\%CD) pz//\%cD -1

with By = (1IN — 2N )/3. Note that the gluon propagator (1.7) possesses an inmpqrtaperty:
Wick rotation is directly possible!

1.4 Summary on Yang-Mills sector

To summarize this section we note that the here discussédgsalution for Green functions
in an Yang-Mills theory implies that the gluon propagatonigaes on the light cone, amdpoint
gluon vertex functions diverge on the light cone. Therefmettempt to kick a gluon freee. to
produce areal gluon, immediately results in productiombhitely many virtual soft gluons to pro-
duce perfect color charge screening. Positivity violafihich implies BRST quartet cancelation
[30]) guarantees that this screening is total, or phraseeraise, that gluons are confined.

2. Dynamically induced scalar quark confinement

2.1 Self-consistency between the quark propagator and theugrk-gluon vertex

As detailed above Landau gauge Green functions provide sistent picture for gluon con-
finement. However, due to the infrared suppression of therglwropagator quark confinement
seems even more unexplainable. To proceed it turns out tcebessary to study the Dyson-
Schwinger equation for the quark propagator together wWithdne for the quark-gluon vertex
[8, 9, 10, 16, 33, 34]. Therefore a detailed study of thisakpeint function, and especially its
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Figure 6: The Dyson-Schwinger equation for the quark-gluon vertex.
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Figure 7: The skeleton expansion for the quark-gluon vertex.

infrared behaviour, is mandatory. Its Dyson-Schwingeragigu is diagrammatically depicted in

fig. 6, its skeleton expansion in fig. 7. Hereby a drastic diffiee of the quarks as compared to
Yang-Mills fields has to be taken into account: They possessss, and in addition one has to
take into account that dynamical chiral symmetry breakind #hus dynamical mass generation
may (and will) occur.

The infrared analysis of the Yang-Mills theory has been gaized to full, although quenched,
QCD in ref. [16]. Let us first consider a limit where the massethe valence quarks are large,
i.e. m> Agep. The remaining scales belawcp are those of the external momenta of the propa-
gators and vertex functions. The Dyson-Schwinger equsitawa then employed to determine the
selfconsistent solutions in terms of powers of the smakmedl momentum scalg? < Agep. The
equations which have to be considered in addition to the ohgang-Mills theory are the ones for
the quark propagator and the quark-gluon vertex which im hizve to be solved self-consistently.

2.2 The quark-gluon vertex, chiral symmetry, and quark confnement

The fully renormalized quark-gluon verté, consists of up to twelve linearly independent
Dirac tensors. Half of these vanish in case chiral symmetyld/be realized in the Wigner-Weyl
mode,i.e. these tensor structures can only be non-vanishing eitlebirél symmetry is explicitely
broken by current masses and/or chiral symmetry is realizbthmbu-Goldstone mode&€. spon-
taneously broken). From a solution of the Dyson-Schwingeations we infer that thegecalar”
structures are, in the chiral limit, generated non-pestively together with the dynamical quark
mass function in a self-consistent fashion. Thus dynanaicahl symmetry breaking reflects itself
not only in the propagator but also in the quark-gluon vertex

Performing an infrared analysis one obtains an infraredrdient solution for the quark-gluon
vertex such that Dirac vector aridcalar” components of this vertex are infrared divergent with
exponent-k — % when either all momenta or when only the gluon momenta vdai$hl6]. A nu-
merical solution of a truncated set of Dyson-Schwinger gguoa confirms this infrared behavior,
see fig. 8. The driving pieces of this solution are the scaledamplitudes of the quark-gluon ver-
tex and the scalar part of the quark propagator. Both pieeesrdy present when chiral symmetry
is broken, either explicitely or dynamically. As can be s&em fig. 8 the functiom; multiplying
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the tree-level tensor structuyg is only the leading one in the ultraviolet, in the infraree gtalar
componentA; is even larger than the vector compongint

b-quark
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Figure 8: The leading vector componeai and a scalar componeng of the quark-gluon vertex for a
current mass corresponding tb guark. Adapted from ref. [16]

The quark-gluon vertex may also serve to extract a runningplaty. Using

r99(p?) ~ (p?)~Y27%, Z¢(p®) ~const, Z(p?) ~ (p?)* (2.1)
one obtains const. 1
a%(p?) = ay, [F9(p?))? (Z: (pH)]*Z(p%) ~ Ncag 7 (2.2)

and thus a coupling which is singular in the infrared comttarthe couplings from the Yang-Mills
vertices.

To determine whether this already relates to quark confinethe anomalous infrared expo-
nent of the four-quark function is determined. The statiargpotential can be obtained from this
four-quark one-patrticle irreducible Green function, whimcluding the canonical dimensions, be-
haves like(p?)~?for p?> — 0 due to the singularity of the quark-gluon vertex for vamighgluon
momentum. Using a well-known relation for a functibril (p?)~2 yields

V= [ SR E—ape ~ i 23)
(2m)3 ’
for the static quark-antiquark potentM(r). At this point one notes that, given the infrared diver-
gence of the quark-gluon vertex as found in the scaling moiwf the coupled system of Dyson-
Schwinger equations, the vertex overcompensates thetfamppression of the gluon propagator
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such that one obtains a linearly rising potential. The ssimy fact is that this potential is dynami-
cally induced and in the infrared dominantly scalar.

To provide further understanding for the here found retatietween chiral symmetry breaking
and quark confinement one may keep chiral symmetry artiffaiaMWigner-Weyl modej.e. in the
chiral limit one forces the quark mass term as well as thel&stgerms in the quark-gluon vertex
to be zero. The result of such a procedure is that then thengmoupling from the quark-gluon
vertex is no longer diverging but goes to a fixed point in tHeared similar to the couplings from
the Yang-Mills vertices. Correspondingly, one obtaingaldehaviour of the static quark potential.
The “enforced” restoration of chiral symmetry is therefdiectly linked with the disappearance of
guark confinement. The infared properties of the quark+gigrtex in the “unforced” solution thus
constitute a novel mechanism ttditectly links chiral symmetry breaking with quark confirerh

2.3 Mass dependence

As mentioned above, based on a truncation for the quarkagladex Dyson-Schwinger equa-
tion which respects the analytically determined infraretidvior, numerical results for the coupled
system of the quark propagator and vertex Dyson-Schwingeateons have been obtained [16].
In fig. 9 the resulting quark mass function is presented fendlues of current masses related to
u/d, s, candb quarks. These quark mass functions as well as the vertekdascshow only a very

10"

3 — b-quark E
¥ — c-quark
- — s-quark
10°F — u/d-quark E
'3 1 1 111 IIII 1 1 111 IIII 1 1 11 IIIII 1 1 | I
10 _
107 10" 10° 10" 10°

p [GeV]

Figure 9: The quark mass functions for several values of current rsaggtapted from ref. [16]

weak dependence on the current quark mass in the deep thffarst of all, the infrared exponent
for all vertex functions are mass independent. Second, adngpthe coefficients of these power
laws, given in table 1, we see a much smaller dependence @ué#nk mass than could have been
anticipated from a naive analysis. As the static potentifilbg build up by the infrared divergent
parts of the quark-gluon vertex we thus predict that thagtiension is almost mass-independent.
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ud| s c b
m(u)[MeV] | 3 | 50 | 1200| 4200
M(0)[MeV] | 270 | 270 | 320 | 650
A1[GeVY/?+K] | 3.95| 3.60 | 2.00 | 2.73
A2[GeVY/?HK] | 8.70 | 7.97 | 4.44 | 6.08

Table 1: The infrared coefficients for the dressing functidag for different current quark massegu?) (at
the renormalization poini? = 170 GeV). Also given are the values of the mass function at mementum.

Provided the Coulombic part of potential has still a lardeafin the bottomonium spectrum this
is in agreement with experimental splittings of charmomid hottonia systems.

Thus our analysis provides (at least) two surprises: Fih&,longstanding discussion on
whether confinement is of a vector or of a scalar nature issowgtified. Dynamically gener-
ated structures of vector, scalar and tensor types in thi-gyhaon vertex lead to a rich structure of
the quark-antiquark interaction. Second, the mass deperd# the string tension does not seem
to follow any easy rulecf. also recent improved lattice data [35]. These and otheilsleththe
confining interaction clearly deserve more investigations

2.4 Summary and outlook on quark sector

The scaling solution for Landau-gauge QCD Green functiassfar reaching consequences
for the infrared behaviour of quarks. The resulting dynahahiral symmetry breaking and the
related dynamical mass generation lead to an infraredatriyiiark propagator. But dynamical
chiral symmetry breaking also occurs in the quark-gluonexerHereby several components, and
especially also the “scalar” ones, diverge on the quark Shsisell.

An attempt to kick a quark fre@g. to produce a real quark, immediately results in production
of infinitely many virtual soft gluons. Hereby these gluomsribt only couple vector-like but also
scalar-like! And the vertex function diverges such thateifely a linearly rising potential is
produced. One obtains therefore infrared slavery and cqu@arinement.

Although these results are in itself quite surprising armbenaging they provide only the start-
ing point for an understanding of quark confinement in fuorwi approaches. Questions which
will be investigated further include:

e How does the formation of a string between colour sourcesatetiself in Green functions?

e Can we learn about the properties of the confining field cordiions from Green functions?

e How does all this relate to other (partially) successfulrapphes to understand the phe-
nomenon of quark confinement?
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