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Topics in baryon chiral perturbation theory

1. Introduction

Baryon chiral perturbation theory is the tool to analysedtnietures of the spontaneously and
explicitly broken chiral symmetry of QCD (for systems withrigon humbeB > 1). There are
many recent developments, from which | just list a few. Ci@mrarformulations have been de-
veloped that allow to deal with the additional large masdesitaa manifestly Lorentz-inavriant
manner like Infrared Regularization (IR) at Bern, the Exliemd-On-Mass-Scheme at Mainz or the
modified IR approach at Munich. Within these schemes and st the older heavy baryon
approach, quite a few successfull calculations at one ldep bave been performed, but of course
some open issues remain to be clarified, like e.g. the puekded to the pion electroproduc-
tion datap(y*, i)p at low photon virtualities form MAMI-B. There are also a fewempts of
two-loop calculations (for the nucleon axial-vector canglga and the nucleon massy). Fur-
thermore, extensions of baryon CHPT have been developeditale the lowest-lying resonances
like the A(1232 and theN*(1440 (as will be discussed below) but also some work on effective
theories including baryons and vector mesons have beearpexfi. Another important field of
high current interest are the so-called unitary extensfonshe three-flavor case, in which the
strict perturbative expansion is given up in favor of a reswation of certain classes of s-channel
diagrams. This allows for studies of resonances, in paati@oncerning the nature of tig1405
or $11(1535 and their influene on kaon(eta)-nucleon scattering or rleEgnetic meson produc-
tion. Most of these topics have been nicely reviewed by BerfiH. Furthermore, baryon CHPT
has become an indispensable tool for lattice QCD practrgneéairal extrapolations and finite vol-
ume effects), and it thus appears appropriate to discuse gery recent results in this field in this
talk (for reviews, see e.g. [1, 2]). More precisely, | willciss on the extraction of the properties
of baryon resonances made of the lighdl, s quarks from lattice data, since this field has gained
substantial interest recently in the lattice communitye(ee.[3, 4, 5]) and is also in the focus of
the experimental programs at Jefferson Lab, ELSA at BonrGD8Y at Jilich.

2. TheA(1232) on the lattice

Arguably the least understood part of the Standard Modehasspectrum of the strongly
interacting particles. The only ab initio method to caltaléhe spectrum from the Lagarangian
of QCD is based on its lattice formulation (space-time diszation) — from now called lattice
QCD. In general, the extraction of the properties of thetexcstates from the lattice data is a more
complicated enterprise as compared to the ground-stat@rad The reason is that the excited
states are unstable and, strictly speaking, can not be ptarimespondence to a single isolated
level in the discrete spectrum measured in lattice simanati A standard procedure proposed by
Lischer (and others) consists in placing the system intate finbic box of a sizé. and studying
the response of the spectrum on the chande éifcan be shown that the dependence of the energy
levels onL is dictated solely by the scattering phase shift in the itdimolume. Consequently, the
method is capable of extracting the phase shift from theéattata that also determines the position
and the width of the resonances (see, e.g. [6, 7] for recdotiletions of thep-meson). Let us
concentrate from here on on the most important (and lowesg)yaryon resonance, tig1232).

In actual calculations on the lattice the quark masses doswlly coincide with physical quark



Topics in baryon chiral perturbation theory

15 2 T T T T T T T T
T “\"Q‘ N\"«\A " I 9 I phylsical l N 8- o data m corrected
<. A - o 1
O\ N\ ™A — | | = datam uncorrecteq
NN I T I /3 >
1.4+ S AN O 1.6+
'\ RN N\ |- Free energy levels :
\ N - o |
£ R NG | 14
£ L
w13 -
z1.2+
e |
1.2 r
1 1 1 L 1 L 1 " 1 " 0.0 L 1 " 1 L 1 " 1 "
3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5
M L M_[GeV]

Figure 1: Left panel: Energy levels of th&(1232) in a box calculated to third order in the SSE (solid lines).
The dashed lines correspond to a reduction oftkédth by a factor 3 and the dotted ones to the free energy
levels. Right panel: Chiral extrapolation of the™ (upper curves) and nucleon (lower curves) masses for
the ETM data. Note that withoiut the finite volume correctmmthe lowest quark mass point for the

one observes the bump mentioned in the text.

masses. This qualitatively changes the picture sincegifjttark mass is large enough, theloes
not decay and can be extracted by the methods applicablesénofdhe stable particles. Reducing
the quark mass, a value is achieved whendh&tarts to decay into a pion and a nucleon. The
spectrum becomes strongly volume-dependent and Lisahetlsod has to be applied to extract
the parameters of the resonance — the mass and the widthn liecaeen that the large finite-
volume correction affects the curve that describes thekgoeass dependence of the resonance
spectrum. Above the decay threshold, the finite-volumeeotions to the spectrum are small
and can be neglected in the first approximation. HowevertHose values of the quark masses
which correspond to an unstakfe finite-volume corrections become large and should be taken
into account. Moreover, merely making the volume largersdast suffice in the case of an unstable
state. Due to the large corrections, the finite volume dataldp a “bump” below threshold, which

is visible at smaller volumes and which can not be descrilyedsing the formulae for the quark
mass dependence in the infinite volume. From the above discud is clear that, order to be
able to include all available lattice data for large as welsmall quark masses in the analysis, one
needs to provide a simultaneous explicit parameterizatioe lattice QCD spectrum in terms
of both the quark mass and the box sizd.. This goal can be achieved by invoking the chiral
effective field theory with explicit spin-3/2 degrees ofdd®m [8, 9] in a finite volume. The first
attempt in this direction was made in Ref. [10], where we hasdormed the calculations of the
finite-volume energy spectrum at third order in the so-dadimall scale expansion (SSE that
paper, it was shown that although the the avoided level krpdkat appears for narrow resoances
is washed out in case of tifedue to its large width (see Fig. 1), its parameters can berdéeted
from the lowest energy levels. More precisely, one fits thegr(@vidth) of theA to the gradient

of the lowest energy level (to the energy level differeBge- E;). We have recently extended this
calculation to fourth order in the SSE and analyzed in détailfinite volume corrections in case

1in the SSE, the nucleafi-mass splitting is counted as a small parameter togetherthétlexternal momenta and
the pion mass.
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[L(m) [ Mg My Epce Epro | OEp++ | 0Epro |
2.1 [314+24]1189+14 [ 1574£29 ] 1609+40| -90 | -129
2.7 |309+1.9 | 1177413 1523+£23 | 1523+34| -39 -43

Table 1: Meson and baryon masses for two different values of the bmed sfthe data are taken from Table
Il of Ref. [12] (central values only) and correspond to theick SS of the interpolating field). The last two
columns correspond to the finite-volume corrections to trexgy levels. All masses are given in MeV.

of an unstable\ [11]. This was in particular spurred by the “kinky behavibaf the mass of the
At as function of the pion mass in the data from the ETM collatimng12] (see the right panel
in Fig. 1). To understand this finite volume effect when thbecomes unstable, consider the
mass, which symbolically can be obtained from the equation

ma = E + f(E, My, M) Zoo(1;07) ,  Zoo(1;07) = Zoo(1;0%) — Zoo(L1;6)] ., » (2.1)

With Zoo(S,0%) = Snezs (P —@?) 7S, g = pL/2m, p= AY?(E2,m},M2)/2E and the precise form
of the functionf (E, my, My) is given in [11]. Forg? < 0, theA is stable and the finite volume cor-
rections are exponentially small. However, for an instadb{g? > 0), the finite volume corrections
are sizeable. This is due to the fact that the functjéfbo(l;qz) has acusp proportional tog®, at
thresholdg? = 0. Moreover, its value in the limig? — 0 is different from zero. This finite volume
effect can now be calculated (for details, see [11]). In &dbthe results for the finite-volume cor-
rections to the lowest data point are given, see also Fig &revthis effect is clearly visible. The
results for theA™-? are presented just for the visualization of the artefactstduhe finite lattice
size (in the twisted mass formualtion, the neutral pion nessuch lighter than the charged pion
mass, inducing some large unphysical isospin breaking ite fattice spacing). As can also seen
from Fig 1, accounting for this finite volume effect allows @ very smooth and sensitive fit to
the nucleon and thA mass. We remark that an analysis of the nucleon/naasses in twsted
mass CHPT, was given in Ref. [13] and'baryon masse3(at) in CHPT (including thed) were
considered in [14].

In a recent paper we have re-addressed the problem of treceatr of theA chracteristics
within non-relativistic effective field theory (NR EFT) infaite volume, which enables one to
carry out the analysis in a more general way [15]. The egndliat determines the location of the
eigenvalues of the Hamiltonian in this framework coincigeth Luscher’s formula. In order to
facilitate the analysis, we further define a so-called piodlig distribution, which is constructed
from the volume-dependent energies. Using Lischer’s f@amucan be shown that — to a good
approximation — the probability distributiof(p) can be expressed via the scattering phase

~c N/ /an(m=25(p)) 2n3'(p)
‘pn_1< b " 4n<nn—5<p>>>’

W(p) (2.2)
where d(p) denotes the scattering phas¢,is the number of the energy levels analyzed énd
denotes a normalization constant. Below we restrict ouvesefo the analysis of the lowest state,
putting N = 1. The central observation is that the probability disttitou in the vicinity of a res-
onance behaves much like the infinite-volume scatteringsceection: it peaks at the resonance



Topics in baryon chiral perturbation theory

15 T T T 4

I ‘ 0 ‘ !

0.25 0.15 0.2 ‘
p [GeV]

0 ‘ \

0.25

o.zp (GeV]

Figure 2: Unsubtracted (left panel) and subtracted (right panelpabdity distributions. Only the lowest
energy level has been included in the analyllis{(1). The solid lines correspond to the prediction made by
using Lischer’s formula. A clear resonance-like structsie@bserved in the subtracted distribution.

energy. The peak has approximately a Breit-Wigner shapid, tve same width as the original
resonance. In Ref. [15] it was shown that in case of a widena@swe, when the avoided level
crossing is washed out, one still observes a clear resorsainegure in the probability distribution
after subtracting the background corresponding to therfiedon of the decay products, corre-
sponding to the fregiN pairs withd(p) = 0. This is shown in Fig. 2 using pseudodata in the
P33 partial wave constructed from the VPI/GWU data base. Thsslteinanimously supports the
conclusion of Ref. [10]: the extraction of both the energy andth of theA-resonance from the
volume-dependent spectrum by using Lischer’s formuladsifide. Note also that this goal can
be achieved even by fitting to the data for the lowest enenggl Eone. For more detailed on the
method and its application, the reader is referred to Reb]. Ve remark further that this method
has recently been applied to a model Hamiltonian that hasharmew even-parity and one broad
odd-parity resoance - both of which can be reproduced diyreee Ref. [5].

3. A method to extract theK™ p scattering length from the finite-volume spectrum

The antikaon-nucleon scattering amplitude is of fundamddntportance in nuclear, particle
and astrophysics. In particular, tHeN system at threshold provides an interesting testing ground
of the chiral dynamics of QCD with strange quarks due to/ti@405 resonance just below the
scattering threshold. In fact, experimental informationtbe K~ p scattering length from scat-
tering data and kaonic hydrogen level shifts is contradjctas first pointed out in Ref. [16]. It
would therefore be most welcome to have another tool at haaitdwould allow one to calculate
this fundamental quantity. For the extraction of N scattering length, a generalization of the
standard Luscher scheme is required since there is a sttwrmnel coupling betweeKN and
>, the latter channel having its threshold about 100 MeV bdlmvopening of th&KN one. In
addition, the appearance of th¢1405) just between these two thresholds further complicates the
picture. Such a scheme was recently proposed in [17]. Iratige olumes required by the Liischer
formula, the characteristic momenta proportionaltd are small. Therefore, the dynamics of a
system can be described by non-relativistic effective filelwbry (NR EFT). For definiteness, we
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assume isospin conservation and restrict ourselves taidrenel with total isospih = 0. Within
dimensionally regularized NR EFT, tlf&wave T-matrix in the infinite volume is the solution of
a coupled-channel Lippmann-Schwinger equation (notedbapled channel dynamics in a finite
box based on quantum mechanics was considered earlier]iaftideferences therein)

Ti1 = Hia+H11i01T11 + Hi2i02To1
To1 = Ho1+Ha1iq: Ti1 + H22ig2 T2 (3.1)

where the channel number 1 referskdl and 2 to=m with total isospinl = 0. The resonance
A(1409 is located between the two thresholds, on the second Rieistzeet, close to the real
axis. These thresholds ase= (my +Mk)2, § = (ms +My)?, with g = AY2(s Mm%, M2)/(2V/9),
0 = AY2(sme,M2)/(2y/5) and A (x,y,2) stands for the Kallen function. The quantitiel (s)
denote the driving potent|al in the corresponding chanték KN scattering length is related to
the amplitudeT;; ats= g via

) 2
a1 = Tua(s) = Hia(8) + i"f%if? >1|3(22;> |

Thus, to pin down its complex value, we need to determinehtteetreal quantitiesl;;, Hi», Hoo at
s= g appearing in Eqg. (3.2). We now consider the same problem mita fiolume. The rotational
symmetry is broken to a cubic symmetry so that the infiniteira version of the LS equation
Eq. (3.1) takes the form (we consider orfywaves here, neglecting the small mixing to higher
partial waves)

(3.2)

2 2
Ti1 = Hi1— — Zoo(l;k%) HiiTi1— ——= ZOO(l;k%) HizTo1,

N N
2 2
Tor = Ho1 — Vi Zoo(1;K§) Hag Tag — Vi Zoo(1;K3) HaaTo1
(3.3)
with k2(L2/41) o2 k% = (L2/41?) g3 , and
Zoo(1;K?) = —— lim ; (3.4)
\/_nrﬂl Z ( k2)r ' ’

Here, we have neglected the terms that vanish exponenditadlfargel. The secular equation that
determines the spectrum can be brought into the form

1— izoo(l;kg)F(s,L) =0,

VL
F(s.L) = ez~ 2 Zon(136) (Huabez ~ )| |1 —2 Zao 1) M 7 ey
Vil VL
This is rewritten as
O(sL) =—@ke)+nm, @)= arctanﬂ n=0,12,..., (3.6)
Zoo(1;K3)
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Figure 3: Energy levels for the two-channel model with an explicitL405) resonance in the finite volume.
The avoided level crossing which is observed at energiesedast 1430 MeV and 1440 MeV is not related to
the physical resonance in the infinite volume but reflectgptesence of th&N threshold. For comparison,
we plot the energy levels for the non-interacting two-méetisystemsts (dashed lines) aniN (dotted
lines).

with
tand(s,L) = gu(s)F(s,L) . (3.7)

d(s,L) is called thepseudophaseThe dependence of the pseudophase amdL is very different
from that of the usual scattering phase. Namely, the elphise extracted from the lattice data by
using Lischer’s formula is independent of the volume moderims that exponentially vanish at a
largeL. Further, the energies where the phase passes thmi®lie close to the real resonance
locations. In contrast to this, the pseudophase contamsstevhich are only power suppressed
at a largel.. Moreover, it contains the tower of resonances which areelated to the dynamics
of the system in the infinite volume and merely reflect theterise of discrete energy levels in
the “shielded” channel. Measuring the pseudophase on theclaan be used to determine the
KN scattering length. This can be directly seen from the espragor the pseudophase, which
depends on the real functioit 1, H10, Hoo. Extracting these from the data on energy levels, we
then find the scattering length by using Eq. (3.2). A typicap@hdence of the energy levels on
the variableL in the coupled-channel case is shown in Fig. 3. Note that énetkpression for
the scattering length we neédj;(s) evaluated at thresholsl= 5. However, replacing;j(s) by

Hij (s) introduces a very small correction, since the effectivegeaterm proportional t¢s— )

is suppressed bly—2 as compared to the leading order result. So, in the fit to t& dame may
replaceH;; (s) by their values at threshold. Using pseudodata generabed dr K-matric model,
we have checked that this method can indeed be used to detainirom the pseudophase in the
vicinity of the K~ p threshold. To summarize this section, we have generaliZisdher’s algorithm
for the extraction of the scattering length from the finitdenme energy spectrum measured on the
lattice. The modified algorithm applies to the case when ¢hétaring length is complex due to the
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presence of open channel(s) below threshold. In the cds_alm‘cattering with total isospih= 0,
the scattering length can be determined by measuring theneolependence of the first excited
level around the threshold energy.

4. Chiral corrections to the Roper mass

Understanding the (ir)regularities of the light quark lmargpectrum poses an important chal-
lenge for lattice QCD. In particular, the first even-paritgcibed state of the nucleon, the Roper
N*(1440 (from here on called the Roper) is very intriguing—it is lighthan the first odd-parity
nucleon excitation, th&;1(1535), and also has a significant branching ratio into two pionseRe
lattice studies have not offered a clear picture about tisdeon resonance spectrum. In particular,
in Ref. [19] an indication of a rapid cross over of the firstifies and negative excited nucleon
states close to the chiral limit was reported — so far not ée@ther simulations at higher quark
masses. Note also that so far very simple chiral extrapoidtinctions have been employed in
most approaches, e.g., a linear extrapolation in the quadses, thus- M2, was applied in [20].

It is therefore important to provide the lattice practigos with improved chiral extrapolation func-
tions. A complete one-loop representation for the pion ndegendence of the Roper mass was
given in [21]. Since the Roper is the first even-parity extséate of the nucleon, the construction
of the chiral SU(2) effective Lagrangian follows standardgedures, see e.g. [22]. The effective
Lagrangian relevant for our calculation is (working in tlsespin limitm, = myq and neglecting
electromagnetism)

L = $0+$R+$NR7
% = iNy,DHN — myNN+ iRy, D¥R— mgRR,
1) _ ONRpS:

2 = %gRﬁyﬂygu“R, L = = Ryl N+he.
(2 _ = ) =3 S 5 Kk pVv %* U\ R
%7 = ¢ (x+)RR R({uyu,){D*,D"} +h.c.) R+ =(uu)RR ,
8ma 2
€] —
2 =~ 0)°RR, (4.1)

whereN, Rare nucleon and Roper fields, respectively, mdmg the corresponding baryon masses
in the chiral limit. The pion fields are collected ip, = —d,1/Fr+ O(m). D, is the chiral
covariant derivative, for our purpose we canBgt= d,, see e.qg. [22] for definitions. Furthey,

is proportional to the pion mass and induces explicit cliyahmetry breaking, and) denotes the
trace in flavor space. The dimension two and four LECand€’ correspond to the; andg of

the effective chiral pion—nucleon Lagrangian [22]. TherpiRoper coupling is given to leading
chiral order by,iﬂ(l), with a couplingggr. This coupling is bounded by the nucleon axial coupling,
|gr| < |gal, in what follows we us@r = 1. The leading interaction piece between nucleons and
the Roper is given b)éf,\(lng. The couplinggnr can be determined from the strong decays of the
Roper resonance, its actual valugig = 0.35 using the Roper width extracted from the speed plot
(and not from a Breit-Wigner fit). Further pion-Roper cougk are encoded 'uiﬂng) and .,%Fg“).

To analyze the real part of the Roper self-energy, one haaltolate a) tree graphs with insertion
~ C],€;, self-energy diagrams with intermediate b) nucleon and apeR states and d) tadpoles
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Figure 4: Quark mass dependence of the Roper mass for different ptraseds. The solid curve gives the
result for the central values of the LECs, the hatched are@gponds to variations of these LECs within

natural bounds. The dotted curve represents the quark reasmdence of the nucleon, see Ref. [23]. The
values of the corresponding LECs acg:= —0.9,¢c;, = 3.2,¢c3 = —3.45,e; = —1.0.

with vertices from.,%éz). In fact, the graphs of type b) require a modification of thgutarization

scheme due to the appearance of the two large mass sgabesdmg. The solution to this problem
—assumingng /m& < 1 (in nature, this ratio is- 1/2.4) —is described in [21]. As discussed in that
paper, the LECs ande" can be bounded assuming naturalness and by direct compavitothe
corresponding pion-nucleon couplings;| <0.5GeV 1, [c; 5| S 1.0GeV !and|e;| S0.5GeV 2.

In Fig. 4 an estimated range for the pion mass dependence Bidher mass is presented by taking
the extreme values far; ; andej, while keepinge; = —0.5 GeV1,gyr = 0.35,gr = 1 fixed. The
masses of the baryons in the chiral limit are taken torge= 0.885GeV [23] andng = 1.4 GeV,
respectively. The upper solid curve is obtained by settivegdouplingsc; 5, €] all to zero, and
exhibits up to an offset a similar quark mass dependenceeasutieon result (lower solid curve,
taken from Ref. [23]). It should be emphasized, however tha one-loop formula cannot be
trusted for pion masses much beyond 350 MeV. No sharp decadafie Roper mass for small
pion masses is observed for natural values of the coupliNgte that the importarhrr and N7t
channels are effectively included through the dimensiom &wd four contact interactions, still it
would be worthwhile to extend these considerations indgdhe delta explicitely. Note further
that the formalism developed in [21] is in general suitedttalg systems with two heavy mass
scales in addition to a light mass scale. In this sense, ibeaapplied to other resonances as well,
such as th&;;(1535). In this case, however, an SU(3) calculation is necessagyalthe important
nN decay channel.
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