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Topics in baryon chiral perturbation theory

1. Introduction

Baryon chiral perturbation theory is the tool to analyse thestrictures of the spontaneously and
explicitly broken chiral symmetry of QCD (for systems with baryon numberB ≥ 1). There are
many recent developments, from which I just list a few. Covariant formulations have been de-
veloped that allow to deal with the additional large mass scale in a manifestly Lorentz-inavriant
manner like Infrared Regularization (IR) at Bern, the Extendend-On-Mass-Scheme at Mainz or the
modified IR approach at Munich. Within these schemes and alsousing the older heavy baryon
approach, quite a few successfull calculations at one loop oder have been performed, but of course
some open issues remain to be clarified, like e.g. the puzzle related to the pion electroproduc-
tion datap(γ∗,π0)p at low photon virtualities form MAMI-B. There are also a few attempts of
two-loop calculations (for the nucleon axial-vector coupling gA and the nucleon massmN). Fur-
thermore, extensions of baryon CHPT have been developed to include the lowest-lying resonances
like the ∆(1232) and theN⋆(1440) (as will be discussed below) but also some work on effective
theories including baryons and vector mesons have been performed. Another important field of
high current interest are the so-called unitary extensionsfor the three-flavor case, in which the
strict perturbative expansion is given up in favor of a resummation of certain classes of s-channel
diagrams. This allows for studies of resonances, in particular concerning the nature of theΛ(1405)
or S11(1535) and their influene on kaon(eta)-nucleon scattering or electromagnetic meson produc-
tion. Most of these topics have been nicely reviewed by Bernard [1]. Furthermore, baryon CHPT
has become an indispensable tool for lattice QCD practioneers (chiral extrapolations and finite vol-
ume effects), and it thus appears appropriate to discuss some very recent results in this field in this
talk (for reviews, see e.g. [1, 2]). More precisely, I will focus on the extraction of the properties
of baryon resonances made of the lightu,d,s quarks from lattice data, since this field has gained
substantial interest recently in the lattice community (see e.g.[3, 4, 5]) and is also in the focus of
the experimental programs at Jefferson Lab, ELSA at Bonn andCOSY at Jülich.

2. The∆(1232) on the lattice

Arguably the least understood part of the Standard Model is the spectrum of the strongly
interacting particles. The only ab initio method to calculate the spectrum from the Lagarangian
of QCD is based on its lattice formulation (space-time discretization) – from now called lattice
QCD. In general, the extraction of the properties of the excited states from the lattice data is a more
complicated enterprise as compared to the ground-state hadrons. The reason is that the excited
states are unstable and, strictly speaking, can not be put incorrespondence to a single isolated
level in the discrete spectrum measured in lattice simulations. A standard procedure proposed by
Lüscher (and others) consists in placing the system into a finite cubic box of a sizeL and studying
the response of the spectrum on the change ofL. It can be shown that the dependence of the energy
levels onL is dictated solely by the scattering phase shift in the infinite volume. Consequently, the
method is capable of extracting the phase shift from the lattice data that also determines the position
and the width of the resonances (see, e.g. [6, 7] for recent calculations of theρ-meson). Let us
concentrate from here on on the most important (and lowest lying) baryon resonance, the∆(1232).
In actual calculations on the lattice the quark masses do notusually coincide with physical quark
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Figure 1: Left panel: Energy levels of the∆(1232) in a box calculated to third order in the SSE (solid lines).
The dashed lines correspond to a reduction of the∆ width by a factor 3 and the dotted ones to the free energy
levels. Right panel: Chiral extrapolation of the∆++ (upper curves) and nucleon (lower curves) masses for
the ETM data. Note that withoiut the finite volume correctionon the lowest quark mass point for the∆++

one observes the bump mentioned in the text.

masses. This qualitatively changes the picture since, if the quark mass is large enough, the∆ does
not decay and can be extracted by the methods applicable in case of the stable particles. Reducing
the quark mass, a value is achieved when the∆ starts to decay into a pion and a nucleon. The
spectrum becomes strongly volume-dependent and Lüscher’smethod has to be applied to extract
the parameters of the resonance – the mass and the width. It can be seen that the large finite-
volume correction affects the curve that describes the quark-mass dependence of the resonance
spectrum. Above the decay threshold, the finite-volume corrections to the spectrum are small
and can be neglected in the first approximation. However, forthose values of the quark masses
which correspond to an unstable∆, finite-volume corrections become large and should be taken
into account. Moreover, merely making the volume larger does not suffice in the case of an unstable
state. Due to the large corrections, the finite volume data develop a “bump” below threshold, which
is visible at smaller volumes and which can not be described by using the formulae for the quark
mass dependence in the infinite volume. From the above discussion it is clear that, order to be
able to include all available lattice data for large as well as small quark masses in the analysis, one
needs to provide a simultaneous explicit parameterizationof the lattice QCD spectrum in terms
of both the quark mass ˆm and the box sizeL. This goal can be achieved by invoking the chiral
effective field theory with explicit spin-3/2 degrees of freedom [8, 9] in a finite volume. The first
attempt in this direction was made in Ref. [10], where we haveperformed the calculations of the
finite-volume energy spectrum at third order in the so-called small scale expansion (SSE)1. In that
paper, it was shown that although the the avoided level crossing that appears for narrow resoances
is washed out in case of the∆ due to its large width (see Fig. 1), its parameters can be determined
from the lowest energy levels. More precisely, one fits the mass (width) of the∆ to the gradient
of the lowest energy level (to the energy level differenceE2−E1). We have recently extended this
calculation to fourth order in the SSE and analyzed in detailthe finite volume corrections in case

1In the SSE, the nucleon-∆ mass splitting is counted as a small parameter together withthe external momenta and
the pion mass.
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L (fm) Mπ MN E∆++,− E∆+,0 δE∆++,− δE∆+,0

2.1 314±2.4 1189±14 1574±29 1609±40 -90 -129

2.7 309±1.9 1177±13 1523±23 1523±34 -39 -43

Table 1: Meson and baryon masses for two different values of the box sizeL (the data are taken from Table
II of Ref. [12] (central values only) and correspond to the choice SS of the interpolating field). The last two
columns correspond to the finite-volume corrections to the energy levels. All masses are given in MeV.

of an unstable∆ [11]. This was in particular spurred by the “kinky behaviour” of the mass of the
∆++ as function of the pion mass in the data from the ETM collaboration [12] (see the right panel
in Fig. 1). To understand this finite volume effect when the∆ becomes unstable, consider the∆
mass, which symbolically can be obtained from the equation

m∆ = E + f (E,mN,Mπ)Z̄00(1;q2) , Z̄00(1;q2)
.
= Z00(1;q2)−Z00(1;q2)

∣

∣

L→∞ , (2.1)

with Z00(s;q2) = ∑n∈Z3(n2− q2)−s, q = pL/2π, p = λ 1/2(E2,m2
N,M2

π)/2E and the precise form
of the function f (E,mN,Mπ) is given in [11]. Forq2 < 0, the∆ is stable and the finite volume cor-
rections are exponentially small. However, for an instable∆ (q2 > 0), the finite volume corrections
are sizeable. This is due to the fact that the functionq2Z̄00(1;q2) has acusp, proportional toq3, at
thresholdq2 = 0. Moreover, its value in the limitq2 → 0 is different from zero. This finite volume
effect can now be calculated (for details, see [11]). In Table 1 the results for the finite-volume cor-
rections to the lowest data point are given, see also Fig 1, where this effect is clearly visible. The
results for the∆+,0 are presented just for the visualization of the artefacts due to the finite lattice
size (in the twisted mass formualtion, the neutral pion massis much lighter than the charged pion
mass, inducing some large unphysical isospin breaking at finite lattice spacing). As can also seen
from Fig 1, accounting for this finite volume effect allows for a very smooth and sensitive fit to
the nucleon and the∆ mass. We remark that an analysis of the nucleon and∆ masses in twsted
mass CHPT, was given in Ref. [13] and‘baryon masses atO(a2) in CHPT (including the∆) were
considered in [14].

In a recent paper we have re-addressed the problem of the extraction of the∆ chracteristics
within non-relativistic effective field theory (NR EFT) in afinite volume, which enables one to
carry out the analysis in a more general way [15]. The equation that determines the location of the
eigenvalues of the Hamiltonian in this framework coincideswith Lüscher’s formula. In order to
facilitate the analysis, we further define a so-called probability distribution, which is constructed
from the volume-dependent energies. Using Lüscher’s formula, it can be shown that – to a good
approximation – the probability distributionW(p) can be expressed via the scattering phase

W(p) =
C
p

N

∑
n=1

(

√

4π(πn−δ (p))

p
+

2πδ ′(p)
√

4π(πn−δ (p))

)

, (2.2)

whereδ (p) denotes the scattering phase,N is the number of the energy levels analyzed andC
denotes a normalization constant. Below we restrict ourselves to the analysis of the lowest state,
putting N = 1. The central observation is that the probability distribution in the vicinity of a res-
onance behaves much like the infinite-volume scattering cross section: it peaks at the resonance
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Figure 2: Unsubtracted (left panel) and subtracted (right panel) probability distributions. Only the lowest
energy level has been included in the analysis (N = 1). The solid lines correspond to the prediction made by
using Lüscher’s formula. A clear resonance-like structureis observed in the subtracted distribution.

energy. The peak has approximately a Breit-Wigner shape, with the same width as the original
resonance. In Ref. [15] it was shown that in case of a wide resonance, when the avoided level
crossing is washed out, one still observes a clear resonancestructure in the probability distribution
after subtracting the background corresponding to the freemotion of the decay products, corre-
sponding to the freeπN pairs with δ (p) = 0. This is shown in Fig. 2 using pseudodata in the
P33 partial wave constructed from the VPI/GWU data base. This result unanimously supports the
conclusion of Ref. [10]: the extraction of both the energy and width of the∆-resonance from the
volume-dependent spectrum by using Lüscher’s formula is feasible. Note also that this goal can
be achieved even by fitting to the data for the lowest energy level alone. For more detailed on the
method and its application, the reader is referred to Ref. [15]. We remark further that this method
has recently been applied to a model Hamiltonian that has onenarrow even-parity and one broad
odd-parity resoance - both of which can be reproduced correctly, see Ref. [5].

3. A method to extract theK−p scattering length from the finite-volume spectrum

The antikaon-nucleon scattering amplitude is of fundamental importance in nuclear, particle
and astrophysics. In particular, thēKN system at threshold provides an interesting testing ground
of the chiral dynamics of QCD with strange quarks due to theΛ(1405) resonance just below the
scattering threshold. In fact, experimental information on the K−p scattering length from scat-
tering data and kaonic hydrogen level shifts is contradictory, as first pointed out in Ref. [16]. It
would therefore be most welcome to have another tool at hand that would allow one to calculate
this fundamental quantity. For the extraction of theK̄N scattering length, a generalization of the
standard Lüscher scheme is required since there is a strong channel coupling between̄KN and
Σπ, the latter channel having its threshold about 100 MeV belowthe opening of thēKN one. In
addition, the appearance of theΛ(1405) just between these two thresholds further complicates the
picture. Such a scheme was recently proposed in [17]. In the large volumes required by the Lüscher
formula, the characteristic momenta proportional toL−1 are small. Therefore, the dynamics of a
system can be described by non-relativistic effective fieldtheory (NR EFT). For definiteness, we
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assume isospin conservation and restrict ourselves to the channel with total isospinI = 0. Within
dimensionally regularized NR EFT, theS-waveT-matrix in the infinite volume is the solution of
a coupled-channel Lippmann-Schwinger equation (note thatcoupled channel dynamics in a finite
box based on quantum mechanics was considered earlier in [18] and references therein)

T11 = H11+H11 iq1T11+H12iq2T21 ,

T21 = H21+H21 iq1T11+H22iq2T21 , (3.1)

where the channel number 1 refers tōKN and 2 toΣπ with total isospinI = 0. The resonance
Λ(1405) is located between the two thresholds, on the second Riemannsheet, close to the real
axis. These thresholds arest = (mN +MK)2, s′t = (mΣ +Mπ)2, with q1 = λ 1/2(s,m2

N,M2
K)/(2

√
s),

q2 = λ 1/2(s,m2
Σ,M2

π)/(2
√

s) and λ (x,y,z) stands for the Källen function. The quantitiesHi j (s)
denote the driving potential in the corresponding channel.The K̄N scattering length is related to
the amplitudeT11 ats= st via

a11 ≡ T11(st) = H11(st)+
iq2(st)(H12(st))

2

1− iq2(st)H22(st)
. (3.2)

Thus, to pin down its complex value, we need to determine the three real quantitiesH11,H12,H22 at
s= st appearing in Eq. (3.2). We now consider the same problem in a finite volume. The rotational
symmetry is broken to a cubic symmetry so that the infinite volume version of the LS equation
Eq. (3.1) takes the form (we consider onlyS-waves here, neglecting the small mixing to higher
partial waves)

T11 = H11−
2√
πL

Z00(1;k2
1)H11T11−

2√
πL

Z00(1;k2
2)H12T21 ,

T21 = H21−
2√
πL

Z00(1;k2
1)H21T11−

2√
πL

Z00(1;k2
2)H22T21 ,

(3.3)

with k2
1(L

2/4π2)q2
1 ,k2

2 = (L2/4π2)q2
2 , and

Z00(1;k2) =
1√
4π

lim
r→1

∑
~n∈Z3

1

(~n2−k2)r
. (3.4)

Here, we have neglected the terms that vanish exponentiallyat a largeL. The secular equation that
determines the spectrum can be brought into the form

1− 2√
πL

Z00(1;k2
2)F(s,L) = 0 ,

F(s,L) =

[

H22−
2√
πL

Z00(1;k2
1)(H11H22−H2

12)

] [

1− 2√
πL

Z00(1;k2
1)H11

]−1

(3.5)

This is rewritten as

δ (s,L) = −φ(k2)+nπ , φ(k2) = −arctan
π3/2 k2

Z00(1;k2
2)

, n = 0,1,2, . . . , (3.6)

6
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Figure 3: Energy levels for the two-channel model with an explicitΛ(1405) resonance in the finite volume.
The avoided level crossing which is observed at energies between 1430 MeV and 1440 MeV is not related to
the physical resonance in the infinite volume but reflects thepresence of thēKN threshold. For comparison,
we plot the energy levels for the non-interacting two-particle systemsπΣ (dashed lines) and̄KN (dotted
lines).

with

tanδ (s,L) = q2(s)F(s,L) . (3.7)

δ (s,L) is called thepseudophase. The dependence of the pseudophase ons andL is very different
from that of the usual scattering phase. Namely, the elasticphase extracted from the lattice data by
using Lüscher’s formula is independent of the volume moduloterms that exponentially vanish at a
largeL. Further, the energies where the phase passes throughπ/2 lie close to the real resonance
locations. In contrast to this, the pseudophase contains terms which are only power suppressed
at a largeL. Moreover, it contains the tower of resonances which are notrelated to the dynamics
of the system in the infinite volume and merely reflect the existence of discrete energy levels in
the “shielded” channel. Measuring the pseudophase on the lattice can be used to determine the
K̄N scattering length. This can be directly seen from the expression for the pseudophase, which
depends on the real functionsH11,H12,H22. Extracting these from the data on energy levels, we
then find the scattering length by using Eq. (3.2). A typical dependence of the energy levels on
the variableL in the coupled-channel case is shown in Fig. 3. Note that in the expression for
the scattering length we needHi j (s) evaluated at thresholds = st . However, replacingHi j (s) by
Hi j (st) introduces a very small correction, since the effective range term proportional to(s− st)

is suppressed byL−3 as compared to the leading order result. So, in the fit to the data, one may
replaceHi j (s) by their values at threshold. Using pseudodata generated from a K-matric model,
we have checked that this method can indeed be used to determinea11 from the pseudophase in the
vicinity of theK−p threshold. To summarize this section, we have generalized Lüscher’s algorithm
for the extraction of the scattering length from the finite-volume energy spectrum measured on the
lattice. The modified algorithm applies to the case when the scattering length is complex due to the
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presence of open channel(s) below threshold. In the case ofK̄N scattering with total isospinI = 0,
the scattering length can be determined by measuring the volume dependence of the first excited
level around the threshold energy.

4. Chiral corrections to the Roper mass

Understanding the (ir)regularities of the light quark baryon spectrum poses an important chal-
lenge for lattice QCD. In particular, the first even-parity excited state of the nucleon, the Roper
N∗(1440) (from here on called the Roper) is very intriguing—it is lighter than the first odd-parity
nucleon excitation, theS11(1535), and also has a significant branching ratio into two pions. Recent
lattice studies have not offered a clear picture about the nucleon resonance spectrum. In particular,
in Ref. [19] an indication of a rapid cross over of the first positive and negative excited nucleon
states close to the chiral limit was reported – so far not seenin other simulations at higher quark
masses. Note also that so far very simple chiral extrapolation functions have been employed in
most approaches, e.g., a linear extrapolation in the quark masses, thus∼ M2

π , was applied in [20].
It is therefore important to provide the lattice practitioners with improved chiral extrapolation func-
tions. A complete one–loop representation for the pion massdependence of the Roper mass was
given in [21]. Since the Roper is the first even-parity excited state of the nucleon, the construction
of the chiral SU(2) effective Lagrangian follows standard procedures, see e.g. [22]. The effective
Lagrangian relevant for our calculation is (working in the isospin limitmu = md and neglecting
electromagnetism)

L = L0 +LR+LNR ,

L0 = iN̄γµDµN−mNN̄N+ iR̄γµDµR−mRR̄R,

L
(1)
R =

1
2

gRR̄γµγ5uµR , L
(1)
NR =

gNR

2
R̄γµγ5uµN+h.c. ,

L
(2)
R = c∗1〈χ+〉R̄R− c∗2

8m2
R

R̄
(

〈uµuν〉{Dµ ,Dν}+h.c.
)

R+
c∗3
2
〈uµ uµ〉R̄R ,

L
(4)
R = − e∗1

16
〈χ+〉2R̄R, (4.1)

whereN,Rare nucleon and Roper fields, respectively, andmN,mR the corresponding baryon masses
in the chiral limit. The pion fields are collected inuµ = −∂µπ/Fπ + O(π3). Dµ is the chiral
covariant derivative, for our purpose we can setDµ = ∂µ , see e.g. [22] for definitions. Further,χ+

is proportional to the pion mass and induces explicit chiralsymmetry breaking, and〈 〉 denotes the
trace in flavor space. The dimension two and four LECsc∗i ande∗i correspond to theci andei of
the effective chiral pion–nucleon Lagrangian [22]. The pion-Roper coupling is given to leading
chiral order byL (1)

R , with a couplinggR. This coupling is bounded by the nucleon axial coupling,
|gR| < |gA|, in what follows we usegR = 1. The leading interaction piece between nucleons and
the Roper is given byL (1)

NR. The couplinggNR can be determined from the strong decays of the
Roper resonance, its actual value isgNR= 0.35 using the Roper width extracted from the speed plot
(and not from a Breit-Wigner fit). Further pion-Roper couplings are encoded inL (2)

R andL
(4)
R .

To analyze the real part of the Roper self-energy, one has to calculate a) tree graphs with insertion
∼ c∗1,e

∗
1, self-energy diagrams with intermediate b) nucleon and c) Roper states and d) tadpoles

8
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Figure 4: Quark mass dependence of the Roper mass for different parameter sets. The solid curve gives the
result for the central values of the LECs, the hatched area corresponds to variations of these LECs within
natural bounds. The dotted curve represents the quark mass dependence of the nucleon, see Ref. [23]. The
values of the corresponding LECs are:c1 = −0.9,c2 = 3.2,c3 = −3.45,e1 = −1.0.

with vertices fromL
(2)
R . In fact, the graphs of type b) require a modification of the regularization

scheme due to the appearance of the two large mass scalesmN andmR. The solution to this problem
– assumingm2

N/m2
R≪ 1 (in nature, this ratio is≃ 1/2.4) – is described in [21]. As discussed in that

paper, the LECsc∗i ande∗i can be bounded assuming naturalness and by direct comparison with the
corresponding pion-nucleon couplings:|c∗1|. 0.5GeV−1, |c∗2,3|. 1.0GeV−1 and|e∗1|. 0.5GeV−3.
In Fig. 4 an estimated range for the pion mass dependence of the Roper mass is presented by taking
the extreme values forc∗2,3 ande∗1, while keepingc∗1 = −0.5GeV−1,gNR = 0.35,gR = 1 fixed. The
masses of the baryons in the chiral limit are taken to bemN = 0.885GeV [23] andmR = 1.4GeV,
respectively. The upper solid curve is obtained by setting the couplingsc∗2,3,e

∗
1 all to zero, and

exhibits up to an offset a similar quark mass dependence as the nucleon result (lower solid curve,
taken from Ref. [23]). It should be emphasized, however, that the one-loop formula cannot be
trusted for pion masses much beyond 350 MeV. No sharp decrease of the Roper mass for small
pion masses is observed for natural values of the couplings.Note that the important∆π andNππ
channels are effectively included through the dimension two and four contact interactions, still it
would be worthwhile to extend these considerations including the delta explicitely. Note further
that the formalism developed in [21] is in general suited to study systems with two heavy mass
scales in addition to a light mass scale. In this sense, it canbe applied to other resonances as well,
such as theS11(1535). In this case, however, an SU(3) calculation is necessary due to the important
ηN decay channel.
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