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We describe the recently found non-selfdual axially symimegloron solutions o8U(2) gluo-
dynamics with trivial holonomy. We present the local Poly@aloop together with the action and
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solutions of the Yang-Mills Higgs system. For certain pagtens pointlike monopole pairs turn
into rings.
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1. Introduction

The relations between the properties of selfdual BPS mdegmdutions [1] and instantons [2]
attracted a lot of interest over the last decade. It was shibatrexact caloron solutionse. time-
periodic instantons at finite temperature®hx St, for which the temporal gauge field component
Ao approaches some constant at spatial infinity [3A4],—~ 2mw = 2mw?c?, are composed out
of Bogomol'nyi-Prasad-Sommerfeld (BPS) monopole (andnaonmopole) constituents [5]. This
time-periodic instanton eventually corresponds to a mwat Polyakov loop (holonomy around
SY) at spatial infinity. In the periodic gaug®, (r,xo+ T) = A (r, %) the Polyakov loop is defined
as

r—oo

T
Z(r) = lim Pexp /Ao(r,xo)dxo , (1.2)
0

whereT is the period in the imaginary time direction, which is rethto the temperatu® through
T = 1/0. The symboP denotes path ordering.

The property of selfduality allows to apply the very powéHDHM-Nahm formalism [7] to
obtain various exact multi-caloron configurations [5, 8llda analyse the properties of the BPS
monopole constituents. In particular, it was shown thahéf size of a charge or@lJ(2) caloron
is getting larger than the periofl, the caloron is splitting into constituentse. the monopole-
antimonopole pair becomes visible through well-separatetps of action. The properties of the
saddle point solutions in the relat&)(2) Yang-Mills-Higgs (YMH) model were discussed first
by Taubes [9], and various monopole-antimonopole YMH systavere constructed numerically
in Refs. [10, 11, 12], both in the BPS limit and beyond.

However, besides the selfdual instantons, also solutibiseosecond order Euler-Lagrange
equations of the Euclidean Yang-Mills (YM) theory are kndd@8]. Thus, a non-selfdual instanton-
antiinstanton pair static configuration has been constduft4], which represents a saddle point
configuration,.e. a deformation of the topologically trivial field.

Recently new static and axially symmetBtJ(2) YM caloron solutions ofR® x S! with triv-
ial holonomy were constructed numerically [15]. These kagtield configurations are labeled
by two integersn and m, analogously to their counterparts in the YMH system, thaenopole-
antimonopole chains and the circular vortices [12]. Simiitathe case of axially symmetric in-
stantons discussed in [14], only the= 1 solutions are selfdual. The calorons labeledhby 2
are non-selfdual. The latter are also composed of constguend correspond to the monopole-
antimonopole chains and/or to the vortex-like solutionRef. [15].

In this talk we briefly describe the properties of the new setidual, axially symmetric
caloron solutions of the second order field equations, gdtere the results of the numerical
evaluation of the holonomy in the caloron background to tlagnrcharacteristics.

2. The Euclidean SU(2) action and the axially symmetric ansatz

We consider the usu&@U(2) YM action

1 1 ~ 2 1 ~
S= é/d4XTr (FIJ\}FIJ\}) = Z/d4x (F[JV:]:F[JV) :Fé/d4XTr (FIJVFIJV> : (21)
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We work in Euclidean spacB® x St with compactified time running img € [0,T]. The gauge
coupling is put equal te? = 1. Thesu(2) gauge potential i\, = A 1%/2, and the field strength
tensor isFyy = duAy — yA, +i[Ay,A)]. The topological charg® = 22 &uvp0 [ d*XTIFLy Fpo.
is defined by the integral over all space-time. Only for agidconfigurations the bound for the
actionS> 87|Q| (and a similar local bound for the densities) is saturated.

To construct the new regular caloron solutions of the cpordingsecond ordefield equa-
tions and in order to investigate the dependence of thesd@m on the boundary conditions, we

employ the axially symmetric ansatz for the gauge field

Ky 73" . " o
Aydx = (Tdr+(1—Kz)d9> 26 "SINO | KeTom + (1—Ka) 50— | d9;
a Tr(n,m) T(”«,m)
_pal _ 4
Ay = 5 <K5 > +Ks > ) (2.2)

that was previously applied to the YMH system [12]. The angstvritten in the basis ou(2)
matricesty™™ , 70"™ andt}” which are defined as the dot product between the Cartesidorvec
of Pauli matricest and the spatial unit vector that generalizes the local dieif /|%| = éi(l’l)
of tangential vectorsi (= r, 0, ¢ denote the tangential directions). The generalizatiorcgeds
analogously to the radial onel*® — g™ — (sin(mB) cog ng),sin(mB) sin(ng),cogmo)), by
changingg — ng and® — m@. The gauge field functionk;(r,8) (i = 1,...,6) depend only on
the spherical coordinatesand 6

Substitution of the axially symmetric ansatz (2.2) into dedinition of the topological charge
QyieldsQ= 3 [1— (—1)M, similar to [12, 14]. Thus, the configurations labeled by ewerelong
to the topologically trivial sector and represent saddl@atgolutions.

To satisfy the condition of finiteness of the total Euclidaation (2.1), we additionally require
that the field strength vanishes ag R, Fyy) — O(r#) with r — . In the regular gauge the
value of theAg component of the gauge potential approaches a constana@alspfinity, i.e.

Ay — grr(”’m). This corresponds to the holonomy at infinity (1.1),

1 1 iBT _(nm) 1 iBT -1_ BT
5 Tr 2(1) — > Tr eXp<7Tr ) = ETr Uexp(TrZ U -= cos7, (2.3)

whereU € SU(2) andf € [0; 2rt/T].

We consider now deformations in the topologically triviglckor and deformations of the
caloron solution with trivial holonomy at infinity [3, 16]. e latter is defined as a time-periodic
array ofQ = 1 or Q = —1 instantons, located along the Euclidean time axis (wittiadiceT).

A possible generalization of this solution corresponds tina-periodic array of instantons with
general charg€) [16]. Now we will not require anymore that the gauge field dddae selfdual
such that, genericallys,, (x) # +Fyy(X).

The regular caloron solutions with finite action density amdper asymptotic behavior can
be constructed numerically by imposing boundary condstiidd] and solving the resulting system
of six coupled non-linear partial differential equatiorfissecond order [15]. As usual, to obtain a
regular solutions we have to satisfy the gauge condifi@a + dgAg = 0 [12]. We also introduce a
compact radial coordinate=r/(1+r) € [0: 1]. The numerical calculations were performed with
the software package FIDISOL based on the Newton-Raphemtiite procedure.
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Figure 1: The action density for then= 2 (upper left) andn = 4 (upper right) caloron chains, both with
winding numbemn = 1, is shown vs. cylindrical coordinatesndp. The Polyakov loop is plotted below.

3. Discussion of the solutions

The simplest class of solutions correspondste: 1. It turns out that, similar to [14], these
solutions are selfdual. We check this conclusion by nurakdalculation of the integrated action
density, as well as direct substitution of the solutions ihie first order equation expressing selfd-
uality. Furthermore, then= n = 1 solution is nothing but the Harrington-Shepard [3] sptedly
symmetric finite temperature solution of unit topologichhmge. The solutions witm= 1 and
n > 2 are of reducedi.e. axial symmetry. Their distribution of action has the shapa torus
around thez—axis.

The m > 2 configurations do not satisfy the first order (selfdualgguations. Similarly to
their counterparts in YMH theory [12], the solutions with= 1 andm = 2,3,4... represent time-
periodic arrays of finite-length chains containing insteust and anti-instantons 6§ = +1 topo-
logical charge in alternating order, located along theiapsymmetry axis withm clearly separated
maxima of the action density (see Fig 1). The topologicatghaensity possessadocal extrema
along thez axis, whose locations coincide with the maxima of the actlensity. Thus, one can
distinguishmindividual constituents.

To compute the local Polyakov loop at a given pointe note that in the static regular gauge
the temporal compone#, of the gauge potential approaches a constant at spatiatyrdgithough
the holonomy is trivial. To check it, we make use of the nucarsolutions found above and
perform the integration in the exponent (in the static gaudg@ne gets TrZ(F) = cos||Ao(7)||
which agrees with (2.3) asymptotically.
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Figure 2: The action density plotted for the= 3, m= 2 (upper left) anch = 3, m= 3 (upper right) caloron
chain solutions. The Polyakov loop is plotted for the: 3, m= 2 (bottom left) caloron and compared with
then =4, m= 4 (bottom right) solution.

For the solutions of the chain type with=1 andm = 2 3,4... the Polyakov loop takes
extremal values?” (%) = —1 (opposite to the asymptotic valu#(|X| — o) = 1) on the symmetry
axis where the constituents are locate& at (0,0,z) (see Fig. 1). In this sense the local Polyakov
loop perfectly corresponds to the action density.

The same general behavior is observed for the other sofut®anerally, the winding number
n is related to the (integer) topological charge of each idial pseudoparticle. Increasimgto
n > 1 deforms the local maxima of the action density into toriugueh the symmetry axis with a
nonvanishing (and increasing witf) radius. For example, a single ring is formed for the config-
uration withn = 3 andm = 2 (see the upper plots of Fig. 2). Similarly, the local Polyakoop
now takes on the value?(X) = —1 on circles in the core of the torus around the symmetry axis
with radiusp,, (see the bottom plots of Fig. 2) where the action density hascadal maximum.
For aQ = 3 instanton-antiinstanton configuration with= m= 3 we found three maxima of the
action density located in three- y—planes corresponding to three tori, one sitting at0 and the
other two sitting symmetrically at= +Az (see the right upper plot of Fig. 2). The local holonomy
precisely mimicks this behavior.

4. Conclusions

We have constructed axially symmetric caloron solutiongte four-dimensional Euclidean
SU(2) YM theory by numerical solution of the second order Yangidléquations with trivial
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asymptotic holonomy. Similarly to the axially symmetric nopole-antimonopole and vortex ring
solutions of the YMH theory, the calorons are labeled by tvieding numbersp andm. They are
consisting of pseudoparticles of topological chatgebuilding up a total topological charde =

5 [1— (=M. The action density of the configuration has a non-triviglpgh The position of its

maxima allow us to identify a pointlike location or a tordighape of each individual constituent,
depending on the value af We have studied here also the landscape of the holonomylyakew
loop. In all cases the loci of?(rp) = —1 coincide with the maxima of the action density.
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