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We report on the recent progress in theoretical and numerical studies of entanglement entropy in
lattice gauge theories. It is shown that the concept of quantum entanglement between gauge fields
in two complementary regions of space can only be introduced if the Hilbert space of physical
states is extended in a certain way. In the extended Hilbert space, the entanglement entropy can
be partially interpreted as the classical Shannon entropy of the flux of the gauge fields through
the boundary between the two regions. Such an extension leads to a reduction procedure which
can be easily implemented in lattice simulations by constructing lattices with special topology.
This enables us to measure the entanglement entropy in lattice Monte-Carlo simulations. On the
simplest example of Z2 lattice gauge theory in (2+1) dimensions we demonstrate the relation
between entanglement entropy and the classical entropy of the field flux. For SU (2) lattice gauge
theory in four dimensions, we find a signature of non-analytic dependence of the entanglement
entropy on the size of the region. We also comment on the holographic interpretation of the
entanglement entropy.
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The methods of quantum information theory has led recently to many important advances in
our understanding of quantum field theories in continuous space-times and on the lattices [1]. In
particular, quantum entanglement of states of systems with many degrees of freedom turned out to
be a very useful model-independent characteristic of the structure of the ground state of quantum
fields. A commonly used measure of quantum entanglement of the ground state of quantum fields
in (D−1)+1-dimensional space-time is the entropy of entanglement S [A] between some (D−1)-
dimensional region A and its (D−1)-dimensional complement B, which characterizes the amount
of information shared between A and B [1]. Entanglement entropy is defined as the usual von
Neumann entropy for the reduced density matrix ρ̂A associated with the region A:

S [A] =−Tr A (ρ̂A ln ρ̂A) (1)

The reduced density matrix is obtained from the density matrix of the ground state of the theory,
ρ̂AB = |0〉〈0| , by tracing over all degrees of freedom which are localized outside of A, i.e. within
B [1]:

ρ̂A = Tr Bρ̂AB = Tr B |0〉〈0| (2)

This density matrix describes the state of quantum fields as seen by an observer who can only
perform measurements within A.

The entropy of entanglement of confining gauge theories has recently become a subject of ex-
tensive studies in the framework of AdS/CFT correspondence, where a simple geometric expression
for the entanglement entropy was conjectured [2, 3, 4]. One of the most interesting predictions of
[2, 3, 4] is that for confining gauge theories the entanglement entropy (1) should be non-analytic in
the size of the region A. In the limit Nc→∞ the derivative of the entropy over the size of A changes
from being proportional to N2

c to a quantity of order N0
c . This property can be intuitively understood

without any reference to AdS/CFT. Indeed, at small distances an observer in A can only see quarks
and gluons, whose number and hence the entropy scales as N2

c , where Nc is the number of colours.
At large distances the effective degrees of freedom are quarks and hadrons, whose number and the
entropy are of order N0

c . Thus at some characteristic size of A, which should be determined by a
typical hadronic scale, the entropy should change from N2

c to N0
c . The nontrivial prediction from

AdS/CFT is that this change is stepwise, and in some sense colourless and colourfull degrees of
freedom never coexist at one energy scale. A similar non-analuticity has also been predicted using
the approximate Migdal-Kadanoff decimations for SU (2) lattice gauge theory [5] and observed in
lattice simulations [6]. Thus the behavior of entanglement entropy of confining gauge theories can
be an interesting new test of Maldacena duality between string theories on (D+1)-dimensional
curved spaces and D-dimensional gauge theories which live on their boundary. On the other hand,
an attempt to define rigorously what is a quantum entanglement between gauge fields in the regions
A and B also leads to the result which closely resembles the holographic principle as formulated
by t’Hooft [7]. Namely, it turns out that due to a specific structure of the Hilbert space of gauge
theories, the entanglement entropy includes the classical Shannon entropy of the probability distri-
bution of the flux of the curvature tensor of the gauge field through the boundary ∂A of the region
A [8]. This entropy can be interpreted as the entropy of the endpoints of electric strings on ∂A.
Thus the boundary between the regions A and B becomes a sort of D-brane for electric strings.
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In order to define the partial trace Tr B in (2), one should decompose the Hilbert space of the
quantum field theory into a direct product HA⊗HB of Hilbert spaces HA and HB of states of
quantum fields inside the region A and B. One of our main assertions is that such a decomposition
is impossible for a Hilbert space of physical states, i.e. a Hilbert space of states which satisfy the
Gauss law. The reason is that in contrast to scalar field theories, in pure gauge theories elementary
excitations are not associated with points in space, but rather with closed loops, which are the lines
of electric flux or electric strings [9]. Obviously, closed loops cannot be classified as belonging
either to A or B, and there are the states which cannot be decomposed into direct products of states
localized completely within A or B. It should be stressed that this conclusion follows from the
general structure of the Hilbert spaces of gauge theories rather than from the dynamical properties
of a particular theory, such as confinement or deconfinement.

For the sake of brevity let us consider the simplest case of Z2 lattice gauge theory in (2+1)
space-time dimensions. All the considerations below can be generalized to other gauge theories
with minor modifications. The Hilbert space is a space of all functions ψ [zl] of Z2-valued link
variables zl on a two-dimensional lattice. A convenient basis in this space can be parameterized by
a set of integer variables ml = 0,1 defined on the links of the lattice: ψ [zl;ml]∼∏

l
zml

l . This basis

is orthonormal with respect to the scalar product 〈ψ1|ψ2〉 = ∑
{zl}

ψ̄1 [zl]ψ2 [zl]. The Hilbert space

of physical states H0 is obtained by imposing the Gauss law as a first-class constraint, so that the
wave functions of physical states are invariant under gauge transformations: ψ

[
zΩ

l

]
= ψ [zl]. The

basis states in H0 can be labelled by such sets {ml}, for which the links with ml = 1 form closed
non-self-intersecting loops, and can be obtained by acting with all possible Wilson loop operators
W [C] = ∏

l∈C
zl on the trivial strong-coupling ground state with ψ [zl] = const. The operator W [C]

thus creates an electric string on the loop C.

Let us denote the Hilbert spaces of all functions on links within A or B as H̃A and H̃B. We
would like to decompose the Hilbert space of physical states H0 as H0 = HA⊗HB, so that HA

and HB are the subspaces of H̃A and H̃B. Consider some state with the wave function of the form
ψ [zl]∼∏

C
zl , where the C is some closed loop which belongs both to A and B. This state is a direct

product of two states in H̃A and H̃B with wave functions ψA [zl] ∼∏
CA

zl and ψB [zl] ∼∏
CB

zl , where

CA and CB are the parts of the loop C which belong to A and B. Since the basis states corresponding
to different loops are orthogonal, this decomposition is unique, and the states ψA and ψB should
necessarily belong to HA and HB. The spaces H0 and hence HA and HB should also contain the
trivial strong-coupling ground state with ψ0 [zl] = const = ψA0ψB0, ψA,B0 [zl] = const. Therefore
if H0 is indeed a direct product of HA and HB, it should also contain a direct product of, say,
ψA0 with ψB. The wave function for such a state is proportional to ∏

CB

zl , but CB is in general not

closed, therefore the Gauss law is violated at the boundary between A and B. We thus arrive at the
contradiction, which completes the proof.

Let us now try to extend the Hilbert space of physical states in some minimal way, so that a
direct product structure can be introduced. The Hilbert space H0 cannot be decomposed into a
direct structure, because it contains the closed strings which belong to both regions A and B. We
can get rid of such strings, if we allow the strings to open on the boundary between A and B. In
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this case any closed string which crosses ∂A can be represented as a direct product of two open
strings, each of which lies completely either within A or B. We thus arrive at the minimal extension
H̃0 of H0, which is the Hilbert space of states which violate the Gauss law only at ∂A. Minimal
extension here means that the Gauss law does not hold in a minimal number of points, and H̃0 is a
subspace of H of minimal dimensionality which contains H0 and which can be represented as a
direct product. To see that this is indeed so, suppose that the Gauss law still holds in some points
on ∂A. In this case one can repeat all the arguments above for the loop C which goes through these
points and arrive at the same contradiction.

We thus conclude that in order to define the spaces of states of gauge fields which are localized
either in A or B one should extend the Hilbert space of physical states and include also the states
of electric strings which can open on the boundary ∂A between A and B. This boundary can be
therefore considered as a sort of D-brane for electric strings, with the positions of their endpoints
being the additional degrees of freedom which emerge as a result of such extension. It is reasonable
to conjecture that these extra degrees of freedom should contribute somehow to the entropy of
entanglement between A and B. In the extended Hilbert space one can naturally define the partial
trace over the fields in B as a sum over all links which belong to B:

〈z′l| Tr Bρ̂ |z′′l 〉= ∑
{zl},l∈B

ρ
[{

zl,z′l
}

,
{

zl,z′′l
}]

(3)

The same expression is valid for lattice gauge theory with any gauge group, with the summation
over Z2-valued variables zl being replaced by integration over the link variables which belong to
the corresponding gauge group.

Having the reduction procedure (3) at hand, one can use the standard replica trick, which is
commonly used to calculate the entanglement entropy of scalar quantum field theories [1]. Namely,
we express the entanglement entropy in terms of the free energies F [A,s,T ] = − lnZ [A,s,T ] of
the theory on a space with topology C(s)⊗TD−2, where C(s) is the s-sheeted Riemann surface and
TD−2 is the D−2 dimensional torus:

S [A] = lim
T→0

(
lim
s→1

∂

∂ s
F [A,s,T ]−F (T )

)
(4)

The branching points of C(s) should cover the boundary ∂A of A.
In order to show that the endpoints of electric strings on the boundary of A indeed become

physically relevant degrees of freedom, let us first consider a simple trial ground state wave function
of (2+1)-dimensional lattice gauge theory. This trial ground state is a superposition of all possible

configurations of closed electric strings with the weight exp
(
−α

2 ∑
l

ml

)
, where ∑

l
ml is the total

length of strings:

Ψ0 [zl] = C ∑
{δml=0}

exp

(
−α

2 ∑
l

ml

)
ψ [zl;ml] (5)

where δml = 0 means that we sum only over closed electric strings and C is the normalization
constant. The wave function (5) would be a product of functions of individual link variables if the
constraint δml = 0 was omitted. Thus in some sense the trial ground state (5) is only “minimally”
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Figure 1: Lattice derivatives of the entanglement entropy and the entropy of intersection points over the size
of the region for 163 lattice. On the left: as a function of l at βg = 0.788, on the right: as a function of βg at
l = 8.

entangled because the electric strings are closed, and there is no entanglement between closed string
states in the bulk of the regions A and B. Hopefully, with such a wavefunction we can calculate the
entanglement solely due to the strings which cross ∂A.

After the application of the replica trick and some algebraic manipulations we arrive a the
following simple and universal answer for the entanglement entropy of the trial ground state (5):

S [A] =− ∑
{x1,...,xm}

p [{x1, . . . ,xm}] ln p [{x1, . . . ,xm}] (6)

where p [{x1, . . . ,xm}] is the probability that the electric string crosses ∂A in the m points x1, . . . ,xm.
Thus for the trial ground state (5) the entanglement entropy is the classical Shannon entropy of the
string endpoints on ∂A. This result can be interpreted as follows: an observer within A can not learn
whether the electric string are continuous over ∂A or not, and should assume the latter. Although in
the ground state all electric strings are, of course, continuous, the observer who can only perform
measurements within A can never know this, and for him the positions of string endpoints outside
of A are an additional source of uncertainty.

In order to check the applicability of the expression (6) to the true ground state of (2+1)-
dimensional lattice gauge theory, we have measured both the entanglement entropy and the entropy
of string endpoints (6) in Monte-Carlo simulations. In order to measure the entanglement entropy,
we have used lattices with topology C(s)⊗TD−2 and approximated the derivative over s at s = 1 in
(4) by a finite difference between s = 2 and s = 1. The region A was a square of size l× l, and only
the differences of entropies S [A′]−S [A] = S (l +1)−S (l) were measured.

The entropy of the endpoints of electric strings was calculated as the Shannon entropy of
the classical probability distribution p [{x1, . . . ,xm}] of the intersection points x1, . . . ,xm between
electric strings and the boundary of A under the simplifying assumption that at fixed m all endpoints
are uniformly distributed over ∂A. The configurations of electric strings were extracted from lattice
simulations of the theory which is related to Z2 lattice gauge theory by a Kramers-Wannier duality
- namely, the Ising model in (2+1) dimensions.

Lattice derivatives S (l +1)− S (l) of the entanglement entropy and the entropy of the dis-
tribution of intersection points are plotted on Fig. 1. For the left plot on Fig. 1 the coupling
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constants βg = 0.788 of Z2 lattice gauge theory is close to the critical point at which percolating
electric strings emerge. At this value of coupling constant the differences S (l +1)− S (l) of both
entropies indeed agree within the error range and practically do not depend on l, which means that
the entropy is proportional to the area of the boundary with a good precision. We thus recover the
familiar “area law” for the entanglement entropy. The data plotted on the right plot on Fig. 1 was
obtained for the fixed size of the region A l = 8 and for different values of the coupling constants
βg and βs. Again, only the differences S (l +1)− S (l) were compared. The dependence on βg is
again similar for both entropies. We conclude that the entanglement entropy is indeed saturated
by the uncertainty in the positions of the endpoints of open electric strings in the extended Hilbert
space at the outer side of ∂A. In view of the actively discussed “holographic descriptions” of field
theories, which relate the properties of string theories in the bulk of AdS space or modifications
thereof with the properties of the field theories on its boundary, it seems rather tempting to asso-
ciate the entanglement entropy of the region A with the classical entropy of some statistical theory
on its boundary. The endpoints of electric strings could then be interpreted as elementary degrees
of freedom in such a theory.

Finally, let us present the results of the measurements of the entanglement entropy in four-
dimensional SU (2) lattice gauge theory. As explained in the introductory paragraph, one can
expect that for confining non-Abelian lattice gauge theories the entropy should change rapidly at
some scale related to a typical hadronic scale. In order to measure the entanglement entropy in this
case, we have used the same approximations as for the (2+1) Z2 lattice gauge theories considered
above.
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Figure 2: The dependence of the derivative of the entanglement entropy 1
|∂A|

S f (l)
∂ l on l. Solid line is the fit

of the data by the function C l−3.

The derivative 1
|∂A|

∂

∂ l S (l) estimated from these measurements is plotted on Fig. 2. It can
be seen that this derivative grows rapidly at small distances. For comparison with the asymptotic
behavior ∂

∂ l S (l) ∼ l−3 at l → 0, we have fitted these results by the function Cl−3 (solid line on
Fig. 2). For the data points with the smallest l the finite differences a−1 (F (l +1,2,T )−F [l,2,T ])
were found at fixed l/a at different a, so that the finite differences (l +a/2)−2− (l−a/2)−2 still
behave as l−3 ∼ a−3. At larger l ∂

∂ l S f (l) seem to approach a kind of plateau for the values of
l between 0.3 f m and 0.5 f m. Here the values of ∂

∂ l S f (l) obtained for different values of lattice
spacing differ rather significantly, which indicates that for our lattice parameters finite-volume and
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finite-spacing effects may still be rather strong. Nevertheless, at least qualitatively all data points
for different values of a display the same behavior. At l ≈ 0.5 f m the derivative 1

|∂A|
∂

∂ l S (l) rapidly
goes to zero and remains equal to zero for larger l. We thus find an indication of a nonanalytic
behavior of entanglement entropy, in accordance with the predictions of [2, 3, 4, 5].

The entanglement entropy is thus a new and a universal parameter which can be used to char-
acterize the confining and deconfining phases of gauge theories. Interestingly, it should distinguish
between confinement and deconfinement even in the presence of dynamical charges and can be
therefore considered as a long-sought-for “order parameter” for confinement/deconfinement phase
transition in QCD. On the other hand, the entanglement entropy receives an essential contribu-
tion from the degrees of freedom on the boundary of A. We can interpret this fact in terms of
“holography” - namely, that the dynamics of gauge theories in D dimensions can be encoded on
D−2-dimensional manifold ∂A. This is at least an interesting point for further research.

This work was partly supported by grants RFBR 06-02-04010-NNIO-a, RFBR 08-02-00661-
a, DFG-RFBR 436 RUS, grant for scientific schools NSh-679.2008.2 and by Federal Program of
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