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The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can
be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice
artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover,
there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is posi-
tive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the
remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on
the lattice as stereographically-projected link variables, it provides a framework for gauge fixed
Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average
is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies
between gauge-fixed lattice and continuum studies of QCD Green’s functions.
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1. Introduction

The Green’s functions of QCD provide a basis for hadron phenomenology [1]. Their infrared
behaviour is also known to contain information about the realisation of confinement in Landau
gauge QCD. Dyson-Schwinger equation (DSE) studies [2] have established that the gluon propa-
gator alone does not provide long-range interactions of a strength sufficient to confine quarks, and
that the infrared dominant correlations are instead mediated by the Faddeev-Popov ghosts of this
formulation, whose propagator was found to be infrared enhanced. This can be understood in terms
of confinement in QCD [1, 3, 4], as a consequence of the Kugo-Ojima criterion which is based on
the realisation of the unfixed global gauge symmetries of the covariant continuum formulation. In
order to distinguish confinement from Coulomb and Higgs phases it requires: (a) The massless sin-
gle particle singularity in the transverse gluon correlations of perturbation theory must be screened
non-perturbatively to avoid long-range fields and charged superselection sectors as in QED. (b) The
global gauge charges must remain well-defined and unbroken to avoid the Higgs mechanism. In
Landau gauge, in which the (Euclidean) gluon and ghost propagators are parametrised by the two
invariant functions Z and G, respectively, this entails that

(a): lim
p2→0

Z(p2)/p2 < ∞ ; (b): lim
p2→0

G−1(p2) = 0 . (1.1)

The translation of (b) into the infrared enhancement of the ghost propagator thereby rests on the
ghost/anti-ghost symmetry of the Landau gauge or the symmetric Curci-Ferrari gauges. It repre-
sents an additional boundary condition on DSE solutions which then lead to the prediction of a
conformal infrared behaviour for the gluonic correlations in Landau gauge QCD [4]. In fact, this
behaviour is directly tied to the validity and applicability of the framework of local quantum field
theory for non-Abelian gauge theories beyond perturbation theory. The subsequent verification
of this infrared behaviour with a variety of different functional methods in the continuum meant
a remarkable success. These methods which all lead to the same prediction include studies of
their Dyson-Schwinger Equations (DSEs) [4], Stochastic Quantisation [5], and of the Functional
Renormalisation Group Equations (FRGEs) [6]. This prediction amounts to infrared asymptotic
forms

Z(p2) ∼ (p2/Λ
2
QCD)

2κZ , and G(p2) ∼ (p2/Λ
2
QCD)

−κG , (1.2)

for p2→ 0, which are both determined by a unique critical infrared exponent κZ = κG ≡ κ , with
0.5 < κ < 1. Under a mild regularity assumption on the ghost-gluon vertex [4], the value of this
exponent is furthermore obtained as κ = (93−

√
1201)/98 ≈ 0.595 [4, 5].

The conformal nature of this infrared behaviour in the pure Yang-Mills sector of Landau gauge
QCD is evident in the generalisation to arbitrary gluonic correlations [7] which has furthermore
been shown to represent a unique scaling solution [8]. In particular, the ghost-gluon vertex is then
infrared finite and the non-perturbative running coupling of [2] approaches an infrared fixed-point,

αS(p2) =
g2

4π
Z(p2)G2(p2) → αc for p2→ 0 . (1.3)

If the ghost-gluon vertex is regular at p2 = 0, its value is maximised and given by αc ≈ 8.9/Nc [4].
However, the uniqueness of infrared scaling does not rule out solutions with infrared finite gluon
propagator and a ghost propagator with a free massless-particle singularity, i.e., Z(p2) ∼ p2/M2 ,
and G(p2) ∼ const., for p2 → 0. This solution corresponds to κZ = 1/2 and κG = 0. It does
not satisfy the scaling relation κZ = κG in (1.2) because transverse gluons decouple for momenta
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p2 � M2, and it is therefore called the decoupling solution [9]. The interpretation of (1.3) as a
running coupling does not make sense in the infrared in this case, in which there is no infrared
fixed-point and no conformal infrared behaviour.

Because of the inevitable finite-volume effects, early lattice studies of the gluon and ghost
propagators could have been consistent with both, the scaling solution or the decoupling solution.
Recently, the finite-volume effects have been analysed carefully in the Dyson-Schwinger equations
to demonstrate how the scaling solution is approached in the infinite volume limit there [10]. This
is clearly not what is being observed, however, in more recent SU(2) lattice data on impressively
large lattices [11, 12]. Present lattice data is fully consistent with the decoupling solution which
poses the question whether we are perhaps comparing apples with oranges when comparing the
minimal lattice Landau gauge correlations with those of local quantum field theory in the infrared?

The latter is based on a cohomology construction of a physical Hilbert space over the indefinite
metric spaces of covariant gauge theory from the representations of the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry. But do we have a non-perturbative definition of a BRST charge in presence of
Gribov copies? In the most direct translation of BRST symmetry on the lattice, there is a perfect
cancellation among these gauge copies which gives rise to the famous Neuberger 0/0 problem.
It asserts that the expectation value of any gauge invariant (and thus physical) observable in a
lattice BRST formulation will always be of the indefinite form 0/0 [13] and therefore prevented
such formulations for more than 20 years now. In present lattice implementations of the Landau
gauge this problem is avoided because the numerical procedures are based on minimisations of a
gauge-fixing potential w.r.t. gauge transformations. To find absolute minima is not feasible on large
lattices as this is a non-polynomially hard computational problem. One therefore settles for local
minima which in one way or another, depending on the algorithm, samples gauge copies of the first
Gribov region among which there is no cancellation. For the same reason, however, this is not a
BRST formulation. The emergence of the decoupling solution can thus not be used to dismiss the
Kugo-Ojima criterion of covariant gauge theory in the continuum.

2. Lattice BRST and the Neuberger 0/0 Problem

In principle, a BRST symmetry could be implemented on the lattice by inserting the partition
function of a topological model with BRST exact action into the gauge invariant lattice measure.
Because of its topological nature, this gauge-fixing partition function ZGF will be independent of
gauge orbit and gauge parameter. The problem is that in the standard formulation this partition
function calculates the Euler characteristic χ of the lattice gauge group which vanishes [14],

ZGF = χ(SU(N)#sites) = χ(SU(N))#sites = 0#sites . (2.1)

Neuberger’s 0/0 problem of lattice BRST arises because we have then inserted zero instead of
unity (according to the Faddeev-Popov prescription) into the measure of lattice gauge theory. On
a finite lattice, such a topological model is equivalent to a problem of supersymmetric quantum
mechanics with Witten index ZGF, except that for gauge-fixing we need a model with non-vanishing
Witten index to avoid the Neuberger 0/0 problem. Then however, just as the supersymmetry of the
corresponding quantum mechanical model, such a lattice BRST cannot break.

In Landau gauge the Neuberger zero, ZGF = 0, arises from the perfect cancellation of Gribov
copies via the Poincaré-Hopf theorem. The gauge-fixing potential for a generic link configuration
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thereby plays the role of a Morse potential for gauge transformations and the Gribov copies are its
critical points (the global gauge transformations need to remain unfixed so that there are strictly
speaking only (#sites−1) factors of χ(SU(N)) = 0 in (2.1)). The Morse inequalities then immedi-
ately imply that there are at least 2(N−1)(#sites−1) such copies in SU(N) on the lattice, or 2#sites−1 in
compact U(1), and equally many with either sign of the Faddeev-Popov determinant.

The topological origin of the zero originally observed by Neuberger in a certain parameter
limit due to uncompensated Grassmann ghost integrations in standard Faddeev-Popov theory [13]
becomes particularly evident in the ghost/anti-ghost symmetric Curci-Ferrari gauge with its quartic
ghost self-interactions. In this gauge the same parameter limit leads to computing the zero in (2.1)
from a product of independent Gauss-Bonnet integral expressions, for each site of the lattice [15],
corresponding to the Gauss-Bonnet limit of the equivalent supersymmetric quantum mechanics
model in which only constant paths contribute [16]. The indeterminate form of physical observ-
ables as a consequence of (2.1) can be regulated by a Curci-Ferrari mass term. While such a mass
m decontracts the double BRST/anti-BRST algebra, which is known to result in a loss of unitarity,
observables can then be meaningfully defined in the limit m→ 0 via l’Hospital’s rule [15].

3. Lattice Landau Gauge from Stereographic Projection

The 0/0 problem due to the vanishing Euler characteristic of SU(N) is avoided when fixing
the gauge only up to the maximal Abelian subgroup U(1)N−1 because the Euler characteristic of
the coset manifold is non-zero. The corresponding lattice BRST has been explicitly constructed
for SU(2) [14], where the coset manifold is the 2-sphere and χ(SU(2)/U(1)) = χ(S2) = 2. This
indicates that the Neuberger problem might be solved when that of compact U(1) is, where the
same cancellation of lattice Gribov copies arises because χ(S1) = 0. A surprisingly simple solution
to this problem is possible, however, by stereographically projecting the circle S1→ R which can
be achieved by a modification of the minimising potential [17]. The resulting potential is convex
to the above and leads to a positive definite Faddeev-Popov operator for compact U(1) where there
is thus no cancellation of Gribov copies, but ZU(1)

GF = NGC, for NGC Gribov copies, which follows
from a simple example of a Nicolai map [16]. As compared to the standard lattice Landau gauge
the number of copies is furthermore exponentially reduced. This is easily verified explicitly in low
dimensional models. While NGC grows exponentially with the number of sites in the standard case
as expected, the stereographically projected version has only NGC = Nx copies on a periodic chain
of length Nx, and lnNGC ∼ Nt lnNx on a 2D lattice of size Nt ×Nx in Coulomb gauge, for example,
and in both cases their number is verified to be independent of the gauge orbit.

Applying the same techniques to the maximal Abelian subgroup U(1)N−1, the generalisation
to SU(N) lattice gauge theories is possible when the odd-dimensional spheres S2n+1, n = 1, . . .N−1,
of its parameter space are stereographically projected to R×RP(2n). In absence of the cancellation
of the lattice artifact Gribov copies along the U(1) circles, the remaining cancellations between
copies of either sign in SU(N), which will persist in the continuum limit, are then necessarily
incomplete, however, because χ(RP(2n)) = 1. For SU(2) this program is straightforward. Starting
from a modified gauge-fixing potential [17] one defines stereographically-projected gauge fields
on the lattice (see [18]),

Axµ =
1

2ia

(
Ũxµ −Ũ†

xµ

)
, where Ũxµ ≡

2Uxµ

1+ 1
2 TrUxµ

,
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such that the gauge-fixing condition is given by the usual lattice divergence but in terms of these
stereographically-projected gauge fields. A particular advantage of the non-compact gauge fields
is that they allow to resolve the gauge condition of the stereographically-projected lattice Landau
gauge by Hodge decomposition. This provides a framework for gauge-fixed Monte-Carlo simula-
tions which is currently being developed for SU(2) in 2 dimensions [19]. In the low-dimensional
models mentioned above it can furthermore be verified explicitly that the corresponding gauge-
fixing partition function is indeed given by ZSU(2)

GF = ZU(1)
GF 6= 0, as expected from χ(RP(2)) = 1.

4. Conclusions and Outlook

Comparisons of the infrared behaviour of QCD Green’s functions as obtained from lattice Lan-
dau gauge implementations based on minimisations of a gauge-fixing potential and from continuum
studies based on BRST symmetry have to be taken with a grain of salt. Evidence of the asymptotic
conformal behaviour predicted by the latter is seen in the strong coupling limit of lattice Landau
gauge where such a behaviour can be observed at large lattice momenta a2 p2� 1 [18]. Observed
deviations from scaling at small momenta in the strong-coupling limit are not finite-volume effects,
but discretisation dependent and hint at a breakdown of BRST symmetry arguments beyond pertur-
bation theory in this approach. Non-perturbative lattice BRST has been plagued by the Neuberger
0/0 problem, but its improved topological understanding provides ways to overcome this problem.
The most promising one at this point rests on stereographic projection to define gauge fields on the
lattice together with a modified lattice Landau gauge. This new definition has the appealing feature
that it will allow gauge-fixed Monte-Carlo simulations in close analogy to the continuum BRST
methods which it will thereby elevate to a non-perturbative level.
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