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1. Introduction

The original Gribov-Zwanziger confinement scenario [1, 2] predicts an IR vanishing static
gluon propagator D(|~p|) in Coulomb gauge. The gluon propagator is also at the heart of varia-
tional estimates to the ground state wave function [3, 4]. A cross check of continuum results with
lattice calculations had, however, long failed. A first study for SU(2) at fixed β = 2.2 indicated
compatibility with Gribov’s formula in the IR but was inconclusive in the UV [5]. Later studies
in SU(2) and SU(3) showed for D(|~p|) strong scaling violations and a UV behaviour at odds with
simple dimensional arguments [6 – 8]. All these works calculate D(|~p|) fixing the Coulomb gauge
only at a given time-slice, neglecting the residual gauge freedom of temporal links. Also one takes
for granted that multiplicative renormalizability holds for the full propagator D(|~p|, p0), although
perturbative results point at a more complex picture [9]. We report here the results first obtained
in [10], where a different strategy was adopted, fixing analytically the residual gauge and then
studying the renormalization of the full spatial propagator D(|~p|, p0). We show that the Gribov
formula [1] perfectly describes the lattice data for the static propagator. We refer to our original
paper [10] for details about conventions and notations. To achieve a good gauge fixing we adapt
the algorithms developed in [11, 12].

2. Results

The first observation made in [10] is that the lattice bare propagator Dβ (|~p|, p0) factorizes as:

Dβ (|~p|, p0) =
fβ (|~p|)
|~p|2

gβ (z)
1+ z2 z =

p0

|~p|
. (2.1)

The denominator |~p|2(1+z2) explicitly accounts for dimensions. Without loss of generality we can
choose gβ (0) = 1. The data for gβ (z) = (1 + z2)Dβ (|~p|, p0)Dβ (|~p|,0)−1 are shown in Fig. 1 for
L = 24. Their leading behaviour can be well described by a power law (1+ z2)α . For β & 2.3 the
functions gβ vary consistently with L, violating multiplicative renormalizability. However as L→∞

all values of α are compatible with 1 within one or two σ i.e. Dβ (|~p|, p0) might eventually be p0

independent. Eq. (2.1) has deep consequences on the “naive” calculation of D(|~p|) ∝ ∑p0 D(|~p|, p0)
as in [6 – 8]. Consider different lattice cut-offs for space and time as

at
= ξ > 1 and define p̂ = as|~p|.

Neglecting subleading terms, for large L we approximate the sum over p0 by an integral yielding:

Dβ (|~p|) '
∫ 2

at

− 2
at

d p0

2π
Dβ (|~p|, p0) =

fβ (|~p|)
|~p|

∫ 2ξ

p̂

0

dz
π

(
1+ z2)α−1

=
fβ (|~p|)
|~p|

I(
2ξ

p̂
,α) ;

I(
2ξ

p̂
,α) =

1
2π

B(
4ξ 2

4ξ 2 + p̂2 ,
1
2
,−α +

1
2
) , (2.2)

where B(z,a,b) is the incomplete beta function. In the lattice Hamiltonian limit, corresponding

to ξ → ∞ [13], I becomes |~p| independent1, I(2ξ

p̂ ,α)→ 1
2
√

π

Γ( 1
2−α)

Γ(1−α) . Then Dβ (|~p|) ∝
fβ (|~p|)
|~p| and

multiplicative renormalizability relies solely on fβ (|~p|). In a standard lattice formulation, however,
ξ ≡ 1 and the extra |~p| dependence B( 4

4+p̂2 ,
1
2 ,−α + 1

2) cannot be avoided. Fig. 2 shows, in spite
of approximations, nearly perfect agreement between Eq. (2.2) and the slopes observed in the UV
for the naive definition of D(|~p|) as in [7].

1I can be analytically continued if α > 1
2 , α− 1

2 6∈ N.
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Figure 1: Data for gβ (z) vs 1+ z2 in log-log scale, L = 24. For sake of readability not all β are shown.

The above discussion makes clear that the static propagator should be defined as Dβ (|~p|) =
fβ (|~p|)
|~p| . To extract it at available L and β we fit gβ (z) and define:

fβ (|~p|) = Dβ (|~p|, p0)
1+ z2

gβ (z)
=: D̃β (|~p|, p0) (2.3)

which is now independent of p0, up to noise. To improve the signal we average over p0, yielding:

f̃β (|~p|) :=
1
L ∑

p0

D̃β (|~p|, p0) , Dβ (|~p|) :=
f̃β (|~p|)
|~p|

, (2.4)

Fig. 3 shows the resulting Dβ (|~p|), which is multiplicatively renormalizable. Fitting a power law
in the IR, |~p|qM−1−q, and a power law plus logarithmic corrections in the UV, Mr−1|~p|−r| log |~p||−s

gives q = 0.99(1), r = 1.002(3), s = 0.002(2) and M = 0.88(1) GeV, with χ2/d.o.f. all in the range
3.2-3.3, in agreement with the UV and IR analysis in [4, 14, 15]. We thus constrain q = r = 1,
s = 0 and fit the whole result through the Gribov formula:

D(|~p|) =
1

2
√
|~p|2 + M4

|~p|2

(2.5)

We find just as good agreement (χ2/d.o.f. = 3.3) again with M = 0.88(1)GeV ' 2
√

σ .
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Figure 2: Comparison between UV deviations from the Gribov formula in the MC data [7] for the naive
static propagator ∑p0

Dβ (|~p|, p0) (•) and our prediction for the leading term B( 4
4+p̂2 , 1

2 ,−α + 1
2 ) ( ).

3. Conclusions

We have shown that on the lattice the static transverse gluon propagator is multiplicatively
renormalizable, IR-UV symmetric and can be well described by Gribov’s formula over the whole
momentum range. Its infrared and ultraviolet behaviours are in good agreement with the results
obtained in the variational approach to continuum Yang-Mills theory in Coulomb gauge [4, 14, 15].
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Figure 3: The gluon propagator: MC data (•), (a few) data for |~p| → M2|~p|−1 (©), the fit to Gribov’s
formula ( ) and the result of the Hamiltonian approach [14] (·−).

[4] C. Feuchter and H. Reinhardt, Phys. Rev. D70, 105021 (2004), [hep-th/0408236].

[5] A. Cucchieri and D. Zwanziger, Phys. Rev. D65, 014001 (2002), [hep-lat/0008026].

[6] K. Langfeld and L. Moyaerts, Phys. Rev. D70, 074507 (2004), [hep-lat/0406024].

[7] M. Quandt, G. Burgio, S. Chimchinda, and H. Reinhardt, PoS LAT2007, 325 (2007), [0710.0549].

[8] A. Voigt et al. PoS LAT2007, 338 (2007), [0709.4585].

[9] P. Watson and H. Reinhardt, Phys. Rev. D76, 125016 (2007), [0709.0140].

[10] Burgio, G., Quandt, M. and Reinhardt, H. (2008), [0807.3291].

[11] I. L. Bogolubsky et al., Phys. Rev. D74, 034503 (2006), [hep-lat/0511056].

[12] I. L. Bogolubsky et al., Phys. Rev. D77, 014504 (2008), [0707.3611].

[13] G. Burgio et al. (TrinLat), Phys. Rev. D67, 114502 (2003), [hep-lat/0303005].

[14] D. Epple, H. Reinhardt, and W. Schleifenbaum, Phys. Rev. D75, 045011 (2007),
[hep-th/0612241].

[15] W. Schleifenbaum, M. Leder, and H. Reinhardt, Phys. Rev. D73, 125019 (2006),
[hep-th/0605115].

5


