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Figure 1. Ghost form factod(k) (left) and gluon energw(k) from the variational solutions presented in

[1].

We solve the Schrodinger equatibhy = Ey of Yang-Mills theory in Coulomb gauge by the
variational principle(/|H|@) — min with the following ansatz for the vacuum wave functional

W(A") [3].

1 a a
WA = — ) eXp<—§ / d*xdyA A (x) w(x,y) A (y)> : (1)

where the kerneto(x,y) is determined from the variational principle [1], [2], [3h&J(At) =
Det(—D@) is the Faddeev-Popov determinant. In practice the so negutuation forcw(x,y) is
converted into a set of Dyson-Schwinger equations for thergpropagator

1 _
(ARO9ATP(y)) = 6% () 5007 (xY) @
with tj; (X) = & — a9 being the transverse projector, and the ghost propagator

52
G(xy) = ((~D-0) ™) = (Xd(~2)(~a) 1) (3)

Here we have introduced the ghost form faad¢A), which describes the deviation of the QCD
ghost propagator from the QED case, whifeA) = 1. The resulting Dyson-Schwinger equations
need renormalisation, which is well under control [15]. .Figshows the solution of the Dyson-
Schwinger equation for the gluon enerm@yk) and the ghost form factat(k), as shown in Ref. [1].
An analytic infrared and ultraviolet analysis of the Dys®ohwinger equation shows the following
asymptotic behaviour [3, 4]

Rk—0): 0k~ dik)~
UV (k — ) : w(k) ~k d(k) ~ KO (4)

At large momenta the gluon behaves like a photon, which iglieement with asymptotic freedom,
while at small momenta the gluon energy diverges, which iesphe absence of gluon states in
the physical spectrum. This is nothing but a manifestatibgl@on confinement. The infrared

divergence of the ghost form factor is a consequence of thiezdmcondition

d~*(k=0)=0, (5)
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Figure2: Left: Heavy quark potential given by eq. (6ight: Running coupling constant.

which has been used as input in the renormalisation of thetdbygson-Schwinger equation. This
is a necessary condition for the Gribov-Zwanziger confingrseenario. In fact, one can show that
there is a sum rule relating the infrared exponents of thetggnad the gluon propagator and an in-
frared divergent gluon energy requires also an infraredrgent ghost form factor, i.e. the horizon
condition (5), see Ref. [4]. A similar behaviour of the prgptors is also obtained from functional
renormalization group flow equations [5]. Fig. 2 shows the-Adelian Coulomb potential

[x—y|—c0

V(ix=y) = ¢ (((~D-9)"(=0°)(~D-9) My} ) "I=" o lx—y . ©)

which for large distances indeed increases linearly [1hadrtfrared analysis reveals. The Coulomb
string tensionoc sets the scale of our approach. Also shown in Fig. 2 is theimgrncoupling con-
stant which is infrared finite, for details see Ref. [4].

In D = 3+ 1 dimensions, previous lattice calculations performed @ul@mb gauge in Ref.
[7, 8] showed an anomalous UV behaviour of the gluon promagatIR : w(k) ~ k°, UV : w(k) ~
k32 — which is in strong conflict with the continuum result. Howeevone should mention that
these lattice calculations assumed multiplicative reradigability of the 4-dimensional gluon prop-
agator, which give rise to scaling violations in the statiogagator. Furthermore, these calcula-
tions did not fix the gauge completely, i.e. the residual tohependent gauge invariance left after
Coulomb gauge fixing was left unfixed.

Recently, we have done improved lattice calculations witloplete gauge fixing [10]. In
these studies, the energy dependence of the 4-dimensitumal gropagator could be explicitly
extracted and it was found that the static gluon propagatandiltiplicatively renormalisable and
shows a perfect scaling. Fig. 3 (left panel) shows the reduolt the gluon propagator of these
calculations together with the continuum results. It isiassd here that the Coulomb string tension
oc is identical to the string tensiam from the Wilson loop. There is a good agreement, particularl
in the infrared and ultraviolet the lattice and continuursutes match perfectly. Itis also remarkable
that the lattice result can be very well fitted by Gribov'sgamal formula for the gluon energy

w(k):\/kz—kl\:—: (7)
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Figure 3: Left: Lattice data forw(k), compared to the solution of the Dyson-Schwinger equatiBnght:
Dielectric functiong (k).
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Figure 4: Topological susceptibilityy as a function of the ratio./o.

with M = 0.88(1) GeV.
In ref. [11] it was shown that the inverse of the ghost forntdad(k) can be identified as the
dielectric function of the Yang-Mills vacuum

g(k)=d (k). (8)

Fig. 3 (right panel) shows the so defined dielectric functitirsatisfies O< £(k) < 1, which is a
manifestation of anti-screening while in QED we ha{&) > 1, which corresponds to ordinary
Debye screening. Furthermore, at zero momentum the dieldéahction vanishes, showing that
in the infrared the Yang-Mills vacuum behaves like a perfembur dia-electric medium. The
vanishing of the dielectric function in the infrared is notartifact of our solutions of the Dyson-
Schwinger equations but is guaranteed by the horizon dgongdiwvhich is a necessary condition for
the Gribov-Zwanziger confinement scenario. A perfect cotba-electric mediung = 0 is nothing
but a dual superconductor. (Here, “dual” refers to an iftange of electric and magnetic fields
and charges.) Recall in an ordinary superconductor the eti@grermeability vanishgs = 0. This
shows that the Gribov-Zwanziger confinement scenario esghe dual Meissner effect [11].
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In the Hamiltonian approach one finds the following exp@sgor the topological suscepti-
bility [14] (V: spatial volume)

sz( >[0|/Bz . r<nUBEnmo>\2 o

Here|n) denotes the exact excited states of the Yang-Mills Hamdtomvith energie€,,. These
eigenstates are of course not known. We work out the magixehts in eq. (9) to two-loop order.
In this order only two- and three-quasi gluon states coutgilwhere the quasi gluons are defined
as excitations of the vacuuf@|A) = W(A) (1) with energyw(k). The resulting expression for the
topological susceptibility is ultraviolet divergent anglads renormalisation. For this aim we exploit
the fact thaty vanishes to all order perturbation theory and renormatieeekpression (9) foy by
subtracting each propagator by its perturbative expresdibis renderg (9) finite. Furthermore,
since the momentum integrals in this expression are dogdnay the infrared part we replace the
coupling constant, which, in principle, should be the raigmone, by its infrared value. The results
obtained in this way for the topological susceptibility ah®wn in Fig. 4 (right panel) as a function
of the ratiooc /0. Choosingoc = 1.50 which is the value favoured by the lattice calculation [7]
we find forSU(2) with /o = 440MeV

X = (240MeV)* . (10)

This value is somewnhat larger than the lattice predicjoa (200— 230MeV)4.
The results obtained so far in the present approach areeqétauraging for further investiga-
tions. A natural next step would be the inclusion of dynainigearks.
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