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The ghost propagator and the Coulomb potential are evaluat€oulomb gauge on the lattice,
using an improved gauge fixing scheme which includes thelwuessymmetry. This setting has
been shown to be essential in order to explain the scalingtions in the instantaneous gluon
propagator. We find that both the ghost propagator and thdo@dupotential are insensitive
to the Gribov problem or the details of the residual gaugadixeven if the Coulomb potential
is evaluated from thég—propagator instead of the Coulomb kernel. In particularsigns of
scaling violations could be found in either quantity, askea well below the numerical accuracy
where these violations were visible for the gluon propagatie Coulomb potential from the
Ag-propagator is shown to be in qualitative agreement with(iienally equivalent) expression
evaluated from the Coulomb kernel.
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1. Introduction

Yang—Mills theory in the Coulomb gauge has recently drawergewed attention, both in the
continuum [1, 2, 3] and on the lattice [5, 4, 6, 7, 8]. This isimhadue to the fact that Gaul?’
law can be resolved explicitly in this gauge, which allowsdameat Hamiltonian formulation with
the transversal part of the remaining vector poterfialas the only physical degree of freedom.
Much of the intuition and techniques from ordinary quantumchanics can thus be carried over
to the YM case. In particular, recent variational approacimethe Schrddinger picture, based
on the notion of a weakly interacting constitutent gluon #mel Gribov—Zwanziger confinement
scenario [12], proved to be very successfull [3]; simildcokations are presently carried out in the
renormalisation flow approach.

All these continuum formulations, in one way or the othevegise to relations between low-
order Green functions of the constituent gluarand the Faddeev—Popov ghosts. It is therefore
important to obtain non-perturbative information on suckrelators from the lattice. Careful stud-
ies of the equal-times gluon propagator, for instance,alesteong scaling violations and a UV
behaviour at odds with simple dimensional arguments [5].7TIBese surprising results reflect the
renormalisation problems for instantaneous correlatoithé continuum. One possible explana-
tion of the lattice findings [9] is based on the idea that ttstdeal gauge freedom left over by the
Coulomb condition must be fixed in such a way that it resemtbledHamiltonian formulation as
closely as possiblé A careful study of the energy dependence of the gluon prdapagzen allows
to manipulate the data such that perfect scaling is obsexwea on finite lattices.

For the confinement scenario layed out by Gribov and ZwarZigg the more important cor-
relators are, of course, the ghost propagator and, in patjche Coulomb potential. Furthermore,
the ghost form factor has been shown to represent the ingétle colour dielectric function of the
Yang—Mills vaccum [13], and is therefore of direct physicglevance. Initial studies of the ghost
and Coulomb propagator for the gauge grdsip= SU(2) with simple Coulomb and no residual
gauge fixing [5] found no scaling violations at low momentat, itad inconclusive results about the
Coulomb string tension in the deep infrared. Moreover, élvesults were partially at odds with
more carefulSU(3) studies using a residual gauge fixing different from ourd,[thich featured
a peculiar saddle-like behaviour in the Coulomb potentidb@ momenta. In the present talk, |
will report about recenBU(2) calculations of ghost form factors and the Coulomb poténiiing
exactly the same gauge fixing techniques which proved gabémt the resolution of the scaling
violations in the gluon propagator.

2. Gauge Fixing

Our gauge fixing procedure employs both simulated annealhththe microcanonical flip
procedure layed out in [7] as a preconditioning with subsetjover)relaxation to complete the
gauge fixing within machine precision. To reduce the Gribois@ and bring the lattice configs
closer to the fundamental modular region, we perform up teedtarts with random gauge transfor-
mations as starting points, and take the copy with the bestmim of the gauge fixing functional.
While this procedure proved to be important for the correttaetion of the gluon propagator in

1For the first-order formalism in the continuum, renormalisty has been proven algebraically [10].
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Figure 1. Left panel: Energy dependence of thg-propagatoDoo(p, po) after improved Coulomb and
resiudal gauge fixing, for various spatial momefga Right panel: The equal-time&y—propagator
Doo(p,t = 0) as a function of the spatial momentypi.

the deep infrared [7], the ghost correlators exhibit a mueleker dependence on the quality of
gauge fixing. This can be clearly seen in the left panel of figit#e value of the ghost propagator
at the lowest diagonal momentyin= (1,1,1) is only very slightly suppressed as the numberf
Gribov restarts is increased, and the optimum is alreadsheghforn as low am ~ 2..3. All this
is in constrast to the corresponding findings for the glu@pagator, where a 20% effect was seen
that required up to = 40 for saturation.

The second important ingredient is the residual gauge fixingnake contact with the Hamil-
tonian approach in Weyl gauge, we would like to put the spatiarageu(t) = L=, Uo(t,X)
to unity. However, periodic boundary conditions only allow to makeu(t) time-independent,
u(t) =Up = const. In the infinite volume limit (and in praxis also for> 32), Ug approaches
unity. Although this only enforcegyUy = 0 on the spatial average, tg—propagator is, within
statistical errors, independent of energy (see left pdifeg.al). In the right panel of fig. 1, we thus
plot only the instantaneou&—propagator which is strongly enhanced in the infrared s Tésult
will be related to the Coulomb potential below.

3. Reaults

The right panel of figure 2 shows our results for the ghostg@gagor and its form factor,

G(p) = (E-P)clp)) =L 2§ & (M(x,0) ) = 2PV (3.0

whereM = (—0D) is the Faddeev—Popov operator and the ghost form fat{ey measures the
deviation from the perturbative result. The form factomisared enhanced, which agrees with the
horizon conditiond—1(0) = 0 necessary in the Zwanziger confinement criterion [12]. iBuared
exponenk ~ 0.22 for the divergencd(p) ~ 1/(p?)¥ is slightly smaller than the one obtained with
naive gauge fixing [5], but agrees well with recent improvedi®s inSU(3) [11].

Even more directly related to the confinement problem is theadled Coulomb potentiadlc,
i.e. the response of the gluon vacuum to static colour ckar§ence the constituent glugk and
its wave functional are gauge-dependént,s not directly the physical potential between static
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Figure 2: Left panel: The ghost propagator at the lowest diagonal nmbamep = (1,1, 1) as a function of
the number of Gribov copies considered in the Coulomb gaugeyfi (Note the scale on the-axis.) Right
panel: The ghost form factak(p) as a function of the spatial momentypj.

quarks (as extracted from Wilson loops or Polyakov lines},dn upper boundyg(r) > %V(r).
This implies that there is no confinement without Coulombfic@ment [12], but a linear Coulomb
potential may persist even in the deconfined phase.

Formally,V,(r) can be computed in one of two equivalent ways,

Ve(lX—y) = (Ao(t. ) Ao(t.y)) =P ((M2-a-MY) ). (3.2)

The formal equivalence of these two expressions can be shote first order formalism upon
explicitly resolving Gaul3’ law [10, 14]. This leaves podsilstenormalisation issues aside and
the lessons learned from the scaling violations in the glurmpagator indicate that some caution
is required when connecting bare instantaneous corrslatof course, thé,—propagator is nu-
merically much simpler than the complicated Coulomb kemedlving two inversions of the FP
operator.

The strong Ward identities in Coulomb gauge [10] imply thn $pecial combination in mo-
mentum space

p>Ve(p) ~ G*(p) (3.3)

is a renormalisation group invariant which can be taken afiaition of the running coupling con-
stant. Simulations with differer@ should thus fall on top of each other without further multat
tive renormalisation. We have tested this conjecture fonenous values o8 on relatively small
16* lattices. (On 32 lattices, we have only been able to complete the analysiseofomplicated
Coulomb kernel for a single value 6. The f—invariance was much better for thg—correlator,
while V; constructed from the Coulomb kernel still showed noticalolgling violations. At present,
it is not known whether these deviations are pure numericthive volume effects, or if they have
any more significant meaning. (Similar observations werdaria ref. [11]). Simulations with
improved statistics on larger lattices have to be condutciedsolve this issue.

Finally, the most direct approach to the confinement issge/en by the expression

p4Vc(p) . (3.4)
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Figure 3. Left panel: The combinatiop*Vc(|p|) with the Coulomb potentiaV; extracted from the\o—
propagatoDgo(p,t = 0). Right panel: The same quantity, wkh extracted from the Coulomb kernel.

From the Fourier transformation of a linear potentialr) = ocr, it is readily seen that
p*Ve(p) — 80k, lp| — 0.

The Coulomb string tensioro; is an upper bound for the real string tensionextracted from
Wilson loops. Previous and current lattice studies arerinksive as to whethes, = g, since the
approach tdp| — 0 is not as uniform as expected: Early simulations withoytrioeed/residual
gauge fixing saw a slight but noticeable rise in the quan8tg)(below|p| ~ 1GeV, which seemed
compatible witho. /o anywhere in the range. 1 3. More recent computation for the gauge group
G = SU(3) prefer a valueg./o =~ 1.6, but the extrapolation to zero momentum is again uncertain
due to a peculiar "bump" in the quantity (3.4) at momenta kbetw01...1GeV.

Our result on & = 32 lattice in figure 3 using all improved gauge fixing techniqg@se
reliable results (for cylinder cut momenta) only downpo~ 0.5GeV. In this range, the results for
(3.4) are compatible withl; computed either from th&y—propagator or from the Coulomb kernel.
The latter result show a more pronounced plateau at the eshatiomenta, which is reminiscent
of the slight rise observed in [5]. However, the numericaiadean equally well be fitted with
a constant. \{; from the Ag—propagator is compatible with the Coulomb kernel resulithin
statistical errors). For both definitions W, we do not see the "bump" reported 8U(3) in
ref. [11]. While the approach to a constant seems promifieger statistics and larger lattices are
required for a reliable extrapolation of/o.

4. Conclusion

The computation of ghost correlators and the Coulomb piaientG = SU(2) show qualita-
tive agreement with continuum calculations in the varigioapproach [2, 3]. The scaling viola-
tions observed previously for the equal-times gluon prapadd(p) have no counter part in the
ghost correlators studied here. In particular, the depsselen the Gribov noise and the details of
the improved gauge fixing are negligable. Likewise, thedwsi gauge fixing, which is essential
for the resolution of the scaling violations (p), seems to have little or no influence on the ghost
propagator or Coulomb potential, even when the latter isaet¢d from the théy—propagator.
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Our residual gauge fixing removes the energy dependenég aot only in the spatial aver-
age, but effectively for arbitrarnpg—correlators. There is thus no issue with renormalisatiwh a
the results for the instantaneofig-correlators resemble the ones with unfixed residual symymet
(Similar observations are made for the ghost propagatortte@oulomb potential as extracted
from the Coulomb kernel.) It is therefore not surprisingttbiar findings agree with other calcula-
tions, even if these fixed the Coulomb gauge naively, or heftresidual symmetry unfixed.

The statistics in the deep infrared are not sufficient to rmakable quantitative extrapolations
for the Coulomb string tensioag, or the Coulomb form factof (p) whose infrared behaviour is
an important ingredient in the variational approaches [2,\8e intend to improve on this and
accumulate data for $2attices with various3, andAg—correlators on even larger lattices. These
results will be published in a forthcoming paper.
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