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Excited mesons in a Bethe-Salpeter approach
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In theoretical hadron physics mesons are a center of attention. Constructed in a simpler way
than baryons in the quark model, they still present a considerable challenge if one aims at an
understanding of all their aspects in terms of quarks and gluons in the context of Quantum Chro-
modynamics, the quantum field theory of the strong interaction. Complementary to (constituent-)
quark models, reductions of the Bethe-Salpeter equation, lattice QCD, and effective field the-
ories, the Dyson-Schwinger-equation approach has emerged as a well-suited formalism for the
covariant study of hadron properties. In particular, radially excited mesons exhibit a sensitivity
to long-range strong-interaction physics. This sensitivity has recently been studied with the help
of the Bethe-Salpeter equation. Here these studies are reviewed and continued together with an
account of possible future developments.
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1. Introduction

Dyson-Schwinger equations (DSEs) provide a nonperturbative continuum approach to Quan-
tum Chromodynamics (QCD) (for recent reviews, see [1, 2]). A complete, simultaneous, and con-
sistent solution of all DSEs results in the knowlegde of all Green functions of the theory. Mesons
are studied within this approach as quark-antiquark bound states in the Bethe-Salpeter equation
(BSE) [3]. In a numerical study one usually resorts to a truncation of this infinite tower of coupled
integral equations by selecting only a few to be solved explicitly. One then incorporates assump-
tions about the solution of the rest of the equations via ansätze for those Green functions of the
theory which are not solved for explicitly. At this point Slavnov-Taylor- and Ward-Takahashi iden-
tities, representing the symmetries of the underlying theory, serve as both restrictions and guides
for such ansätze. In particular, satisfaction of the axial-vector Ward-Takahashi identity (AVWTI)
by appropriate construction of the kernels of the quark-propagator DSE and the qq̄ BSE correctly
implements chiral symmetry and its dynamical breaking in a truncation. A way to systematically
do this in terms of a nonperturbative scheme is known [4, 5]. The lowest order in this scheme is re-
ferred to as the “rainbow-ladder” (RL) truncation. While studies beyond RL have so far been mostly
of exploratory nature (see, e. g., [6, 7, 8, 9] and references therein), various model interactions have
been used to employ RL meson studies [10, 11, 12, 13, 14, 15]. The model of Ref. [16] has been
used in most detail to study pseudoscalar- and vector-meson ground-state, in particular electromag-
netic, properties (see [17] and references therein). This interaction is also the basis for the present
calculation. While it was developed at and intended for light-quark masses, an extension to heavy
quarks was also explored [18, 19, 20], but ultimately only succeded recently [21], since particular
numerical care must be taken if one aims at reaching the b-quark mass (see also Sec. 2). Studies
of radial meson excitations are another natural extension of the model of Ref. [16]. In particular,
aspects of pseudoscalar and scalar meson excitations have been investigated [22, 23, 24, 25, 26];
here, vector-meson radial excitations are added to the picture. Note furthermore that the analogous
approach to baryons as systems of three quarks is considerably more involved: there, intermedi-
ate steps have been taken to allow for the same level of sophistication as in corresponding meson
studies (for recent advances, see [27, 28, 29] and references therein).

2. Details of the Approach and Numerical Technique

In RL truncation a meson with total qq̄ momentum P and relative qq̄ momentum k is described
by the BS amplitude Γ(k;P), the solution of the homogeneous, ladder-truncated qq̄ BSE

Γ(k;P) =−4
3

∫
Λ

q
G ((k−q)2) D f

µν(k−q) γµ S(q+)Γ(q;P)S(q−) γν , (2.1)

where Dirac and flavor indices have been omitted for simplicity and the factor 4
3 comes from the

color trace. D f
µν(p− q) is the free gluon propagator, γν is the bare quark-gluon vertex, G ((p−

q)2) is an effective running coupling, the (anti)quark momenta are q± = q ± P/2, and
∫

Λ

q =∫
Λ d4q/(2π)4 represents a translationally invariant regularization of the integral, with the regu-

larization scale Λ [14]. S(p) is the solution of the rainbow-truncated QCD gap equation

S(p)−1 = (iγ · p+mq)+
4
3

∫
Λ

q
G ((p−q)2) D f

µν(p−q) γµ S(q) γν , (2.2)
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where mq is the current-quark mass, and renormalization details have been omitted for simplicity.
The quark propagator has the general form S(p)−1 = iγ · pA(p2)+B(p2).

In the qq̄ BSE for equal-mass constituents in Euclidean momentum space a solution at P2 =
−M2 (M is the bound-state mass) requires knowledge of the quark propagator at complex momenta
whose squares lie inside a parabola defined by the complex points (−M2/4,0) and (0,±M2/2)
(for a more detailed discussion, see e. g. App. A of Ref. [30]). This can present a considerable
numerical challenge at large quark masses (in practice for mq larger than the charm quark mass).
In the present work a method based on the strategy outlined in [7] is used. The starting point is a
switch of integration variable in Eq. (2.2) from the quark momentum used on the real axis to the
gluon momentum, which is made possible here by the translationally invariant regularization of
all integrals (numerical checks on the real p2 axis show that errors from this procedure are indeed
negligible compared to those already present from the integration on the real axis). Integrating
over the gluon momentum implies that in order to solve Eq. (2.2) for a complex value of p2 one
needs to evaluate G for real arguments, while S must be evaluated for complex arguments. As a
consequence, simultaneous iteration on a complex grid seems necessary. The same information as
on a complex 2D grid can be obtained from a contour surrounding the region of interest, which
suggests the use of the Cauchy formula. In Ref. [7] the authors use a combination of contour
integration and fitting: they close the parabolic contour at a positive real value q2

UV large enough to
ensure that values of A and B for arguments with larger real parts than q2

UV are well described by fits
to the corresponding UV behavior of the solutions on the real axis. Then one needs to parameterize
the parabolic contour and implement the necessary integrations numerically. The Cauchy formula
states that one can compute the value of a function f (z) at a point z0 inside a closed contour C

from the values of the function on that contour using an n-point quadrature as

f (z0) =
1

2πi

∫
C

dz f (z)
z− z0

≈ 1
2πi

n

∑
j=1

w jn f (z jn)
z jn − z0

, (2.3)

with z jn and w jn the n-point quadrature abscissae and weights on C . Such a straight-forward
numerical implementation of the Cauchy formula is inaccurate as soon as z0 approaches the contour
(for z0 on the contour, the integral in Eq. (2.3) is singular). Hence, a different setup is in order.

Here, the implementation of this method in [7] is modified in two respects. First, the parabolic
part of the contour is parameterized differently: z(t) = t2/M2

max−M2
max/4+ i t, dz(t) = (2t/M2

max +

i)dt, |t| < Mmax

√
q2

UV +M2
max/4. Secondly, to avoid proximity of z0 to the contour, the authors

of Ref. [7] modify their momentum routing in the quark self energy and choose a routing such
that both the arguments of the coupling and the quark propagator in the self energy are complex.
However, this is not necessary, since there is a reliable numerical implementation of the Cauchy
formula described in Ref. [31]. There the authors use the Cauchy theorem to obtain a prescription
for the evaluation of numerical correction terms for the integral in the Cauchy formula at every
order in the computation of a function and its derivatives. In particular, one has

f (z0)≈

(
∑

n
j=1

w jn f (z jn)
z jn−z0

)
(

∑
n
j=1

w jn
z jn−z0

) , f ′(z0)≈

(
∑

n
j=1

w jn f (z jn)
(z jn−z0)2 − f (z0)∑

n
j=1

w jn
(z jn−z0)2

)
(

∑
n
j=1

w jn
z jn−z0

) (2.4)

with similar formulae for higher derivatives. As a result, the main source of numerical inaccuracy
in this method is the sampling of the function by the integration points chosen on the contour.
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Figure 1: Left panel: Pseudoscalar and vector meson masses as functions of the current-quark mass, the
vertical dotted lines denote the values of light, s and c quark masses; right panel: Pseudoscalar and vec-
tor meson masses as functions of the model parameter ω (see text), the horizontal dotted lines denote the
corresponding experimental values.

3. Results and Discussion

Using this setup, one can compute meson masses from the qq̄ BSE. The left panel of Fig. 1
shows pseudoscalar- and vector-meson masses for the ground and first radially excited states, re-
spectively, as functions of the current-quark mass. The vertical dotted lines mark the positions
of the light-, s-, and c-quark masses, fixed by the condition that the vector state agrees with the
experimental value. Regarding radial excitations, an important observation is the following. The
model interaction of Ref. [16] contains two terms; one makes sure that the coupling has the cor-
rect UV behavior of the QCD running coupling and is not important for the following argument,
while the other is an ansatz for the low- and intermediate-momentum ranges, i. e., it character-
izes the long-range part of the strong interaction. This term is of the form (for full detail, see
[16]) G (k2)/k2 ∼ D

ω4
k2

ω2 e−k2/ω2
, where D and ω are free parameters. These were fitted to pion

observables and the chiral condensate in [16] for different values of the parameter ω , which can
be interpreted as the inverse of an effective range of the strong interaction in this model [24]. As a
result, ground-state properties should not vary much as functions of ω , while properties of excited
states should be more sensitive in this respect due to the reasonable assumption that they are larger
than ground states. This is shown in the right panel of Fig. 1, where the two cases of the light and
charm quarks are exemplified; horizontal dotted lines mark the experimental values. It is evident
that for radial excitations, even with the large dependence on ω taken into consideration, the re-
sults considerably underestimate the experimental values (which lie well above the region plotted
in the figure), in particular in the vector case. While the overall qualitative picture is already coher-
ent, further studies are expected to yield quantitatively acceptable results after taking into account
corrections to RL truncation.

In summary, a study of radial meson excitations in a Bethe-Salpeter approach immediately
allows valuable insight and qualitative studies, but further investigations are necessary before one

4



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
7
5

Excited mesons in a Bethe-Salpeter approach Andreas Krassnigg

can make reliable quantitative statements in this direction. Necessary improvements include adding
corrections to the rainbow-ladder kernel as well as an explicit coupling to hadronic decay channels,
i. e., a study of meson resonances in the Bethe-Salpeter equation.
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