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1. Introduction

It has been a longstanding challenge to describe meson and baryon properties in terms of
QCD’s elementary degrees of freedom, namely quarks and gluons. A quantum-field theoretical
framework must address non-perturbative phenomena of QCD such as confinement and dynamical
chiral symmetry breaking (DCSB). The latter is the mechanism that generates a non-perturbative
constituent-quark mass scale and large dynamical hadron masses, and it accounts for a massless
pion as the Goldstone boson in the chiral limit. A suitable tool to address these problems is provided
by the Dyson-Schwinger equations (DSEs) of QCD which represent an infinite set of coupled inte-
gral equations for QCD’s Green functions (see [1, 2] for recent reviews). Combined with hadronic
bound-state equations, i.e., the Bethe-Salpeter equation (BSE) for mesons and its three-body ana-
logue for baryons, it offers a covariant and non-perturbative continuum approach that complements
existing studies in lattice QCD, chiral effective field theories (ChEFTs) and quark models.

An extensive amount of meson properties has been collected in this setup during the past
decade, see [3] for a short summary. Additional assumptions are needed to make the bound-state
framework computationally accessible towards baryon physics. Owing to a strong attraction in the
color-antitriplet qq channel [4, 5], correlations between two quarks may be assumed to dominate
the binding of baryons. This simplifies the three-body equation to an effective two-body problem
where a colorless baryon is constructed out of colored quarks and "diquarks". The resulting quark-
diquark BSE expresses the baryon’s binding through a quark exchange between quark and diquark
which thereby swap their roles. The setup has been utilized to investigate the nucleon’s mass
and electromagnetic form factors [6, 7, 8, 9] and was recently extended to arbitrary current-quark
masses [10, 11]. Observing that the diquark is bound by the same mechanism that binds quarks
and antiquarks to mesons, a parallel effort has been made to relate meson and baryon observables
through a single effective, current-mass dependent quark-gluon interaction [12, 13, 14, 15]. In this
paper we summarize the setup of this latter program and highlight some related results.

An important role in the chiral structure of hadrons is played by the light pseudoscalar mesons
which augment the hadronic ’quark core’ and provide further attraction. Such contributions are
not captured in the rainbow-ladder (RL) truncation of the Dyson-Schwinger equations which is
employed herein and must be additionally accounted for (see, e.g., [17]). Given that a proper
implementation of chiral corrections would shift RL results in line with experiment, we identify
those results with an inflated hadronic ’quark core’.

2. The quark core of mesons

A solution of the meson BSE relies upon an expression for the dressed quark propagator which
is obtained from solving its DSE. The correct implementation of spontaneous chiral symmetry
breaking relates the kernels of both equations which, in the simplest consistent setup, is realized
by a rainbow-ladder truncation. It is expressed by a dressed-gluon ladder exchange between quark
and antiquark and a truncation of the quark-gluon vertex to its vector component ∼ γµ , where an
effective coupling αeff absorbs the quantities which are not explicitly solved for. We employ the
parametrization of Refs. [18, 13], schematically written as:

αeff(k2, m̂,ω) = c(m̂)αIR(k2,ω)+αUV(k2), (2.1)
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where k2 is the gluon momentum, m̂ the renormalization-point independent current-quark mass
which enters the quark DSE, and ω a width parameter. The ultraviolet part of Eq. (2.1) is fixed by
perturbative QCD. The exponential-like infrared term is modeled to provide the necessary strength
to enable DCSB. Its current-mass dependence c(m̂) was determined in [13] by requiring that π-
and ρ-BSE solutions reproduce the following quark-core estimate for mρ(m2

π), cf. Fig. 1:

x2
ρ = 1+ x4

π/(0.6+ x2
π), xρ = mρ/m0

ρ , xπ = mπ/m0
ρ , (2.2)

with the chiral-limit value m0
ρ = 0.99 GeV. Guided by lattice results and experimental data, it is

based upon the assumption that beyond-RL corrections which are relevant for hadronic observables
predominantly appear in the chiral region, partly owing to pseudoscalar meson-cloud contributions,
and hence transcend the ’quark core’ obtained in a RL truncation. A variation of ω by 20% has no
impact on pseudoscalar and vector-meson ground-state observables; and, as demonstrated below,
only minimally affects nucleon properties. Eq. (2.2) therefore provides the only active physical
input throughout our calculation of hadron masses and their static electromagnetic properties.

In agreement with model expectations, mass-dimensionful observables ( fπ , 1/rπ , 〈q̄q〉1/3)
uniformly respond to the inflated quark core for mρ ; i.e., they are consistently overestimated by
∼ 35% in the chiral limit [13]. Moreover, fπ and rπ tend to approach lattice results for heavier
quarks (see Fig. 1). This validates the notion of a pseudoscalar meson cloud which increases a
hadron’s charge distribution towards the chiral limit where it would diverge.

3. Nucleon mass and electromagnetic properties

Among the lightest diquark correlations which enter the nucleon’s quark-diquark BSE and
hence provide the dominant attraction are scalar and axial-vector diquarks. They are determined
self-consistently from their diquark BSEs which are expressed by the same iterated gluon exchange
that binds quarks and antiquarks to mesons. It is remarkable that, despite the large ω-dependence
of the unobservable diquark masses, the resulting mass of the nucleon is very weakly dependent on
this parameter (cf. Fig. 1), owing to cancellations in scalar and axial-vector diquark channels. The
chosen quark core of the ρ-meson which leaves room for chiral corrections, Eq. (2.2), consistently
leads to an increased nucleon core mass, with MN = 1.26(2) GeV at the physical u/d-quark mass
value [14]. Comparable values have been quoted, e.g., by ChEFT [19]. They suggest that the
rainbow-ladder induced quark-diquark setup, despite omissions related to further truncations in the
baryon sector, contributes a sizeable amount to the nucleon’s quark core.

The study of electromagnetic form factors at finite photon momentum transfer requires know-
ledge of how the photon couples to the quark and diquark ingredients. The relevant diagrams in the
quark-diquark model were derived in [20] and extended to the present framework in [12]. Only the
components transverse to the photon momentum, i.e. those not constrained by current conservation,
determine the physical form factor content. The available information on those parts at larger Q2 is
limited within the scope of the current approach; however they are mandatory to enable a realistic
Q2-evolution of the form factors and the proton’s form factor ratio µpGp

E/Gp
M [14]. The respective

contribution to the quark-photon vertex is known from its inhomogeneous BSE solution [21] and
includes a ρ-meson pole which amounts to ∼ 50% of both pion and nucleon squared charge radii.
The nucleon’s Dirac and Pauli radii r1 and r2 follow a similar pattern as rπ , cf. Fig. 2: they are
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Figure 1: Left panel: Evolution of the nucleon mass (thin band) and scalar and axial-vector diquark masses
(thick bands) with pion mass squared. The solid curve for mρ represents the input of Eq. (2.2); the bands
denote the sensitivity to a variation of ω . We compare to a selection of lattice data and their chiral extra-
polations (dashed lines) for mρ and MN . Right panel: Evolution of the squared pion charge radius with mπ

compared to lattice results. Dots denote the experimental values. (Figures adapted from Refs. [14] and [13];
see references therein.)

weakly dependent on ω and agree with lattice data at larger quark masses where the ’quark core’
becomes the baryon.

A natural feature of a quark-diquark model is the negativity of Fn
1 (Q2). The presence of an

axial-vector dd diquark correlation centers the d-quark in the neutron and induces ru
1 > rd

1 [14].
Our result for the scalar-diquark contribution to (rn

1)
2 = (2/3)((ru

1)
2− (rd

1)2) at the light-quark
mass is 0.00(1) fm2; adding axial-axial and scalar-axial correlations yields 0.11(1) fm2. This is
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Figure 2: Isovector radii corresponding to the Dirac and Pauli form factors Fv
1,2 = F p

1,2−Fn
1,2 compared to

lattice results [22, 23]. Dots denote the experimental values.
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large compared to the experimental value (rn
1)

2 = 0.01 fm2 and indicative of further destructive
interference with meson-cloud corrections in the axial-vector diquark channel.

4. Summary

The Green-function approach provides a consistent description of meson and baryon proper-
ties, which in a rainbow-ladder truncation is limited to the hadronic quark core. The framework
can in principle be applied to any hadron, both its ground state and excitations. Pion-cloud effects
become important towards the chiral limit, and the introduced setup may be used as a convenient
starting point for implementing those corrections.
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