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We investigate the thermodynamics of a pion gas within the O(N) model in the 1/N expansion.
Using the auxiliary field technique, we compute the effective potential up to the next-to-leading
order (NLO) and show that it can be renormalized in a temperature-independent manner. The
crucial step for the consistency of the calculation turns out to be the elimination of the auxil-
iary field prior to renormalization. Subsequently, we solve the NLO gap equation for the chiral
condensate as a function of temperature both in the chiral limit and with explicit symmetry break-
ing. We propose a simple semi-analytic estimate of the NLO correction to the condensate and
compare it to the exact numerical solution. Finally, we show that in the chiral limit the chiral
symmetry is restored at finite temperature by a second-order phase transition, and determine the
critical scaling of the order parameter. We study the dependence of the critical temperature on the
renormalized coupling and find that in contrast to the weak-coupling limit, at strong coupling the

critical temperature increases at NLO.

8th Conference Quark Confinement and the Hadron Spectrum
September 1-6, 2008
Mainz. Germany

*Speaker.
"On leave from Department of Theoretical Physics, Nuclear Physics Institute ASCR, 25068 Rez, Czech Republic.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:brauner@ujf.cas.cz

O(N) model in 1/N expansion Tom4s Brauner

1. Introduction

The low-energy physics of Quantum Chromodynamics (QCD) is governed by chiral symme-
try, associated with the presence of (almost) massless quarks. In the sector of the lightest u and
d quarks, the spontaneous breaking of the SU(2);, x SU(2)g chiral symmetry in the vacuum gives
rise to an isospin triplet of pseudo-Nambu—Goldstone bosons, the pions. As the lowest excitations
of the ordered ground state, these dominate the thermodynamics at low temperatures. Since the
conventional perturbation theory breaks down at finite temperature, one needs a suitable nonper-
turbative resummation scheme to deal with the thermodynamics, in particular with the symmetry-
restoring phase transition. In QCD with two quark flavors, one can make use of the isomorphism
of the chiral group with the O(4) rotation group. The pions as well as the sigma meson are de-
scribed using the scalar O(4) model, which is subsequently generalized to O(N), allowing for a
nonperturbative (one-particle-irreducible) 1/N expansion [1].

In this contribution we further develop the calculation of [2, 3] at the next-to-leading order
(NLO) in the 1/N expansion. In particular we show that the NLO effective potential can be renor-
malized by temperature-independent counterterms. This allows us to renormalize and solve the
NLO gap equation. From the methodical point of view, our main conclusion is that for a consis-
tent renormalization one has to dispense with the auxiliary field introduced in [1] (see [4] for an
alternative approach). From the physical point of view, we show that the NLO truncation predicts a
second-order chirally-restoring phase transition and the critical behavior in accordance with general
universality arguments. For details of the calculations as well as a more complete bibliographical
account of related work we refer the reader to [5].

2. The auxiliary field technique

At zero temperature and density, the O(N) sigma model is defined by the Euclidean Lagrangian

_ o0+ (o — N2 -
L =5 (0u0)’ + g (0:6i—Nf2)* = VNH gy,

where i = 1,...,N, and the parameters f; and A denote the pion decay constant and coupling,
respectively. The H-term accounts for explicit symmetry breaking by nonzero quark mass. The
essence of the auxiliary-field trick [1] is to add a new field & by means of a pure Gaussian action,
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In case we wish to study pion gas at finite isospin density and pion condensation [6 — 8], we further
have to introduce the isospin chemical potential t; in terms of the covariant derivative of the scalar
field. Choosing ¢; » to represent the charged pion 7+, this amounts to adding

ALy = —iu (919092 — 920091) — %#12(‘1512 +05).

As a next step one defines the chiral condensate, ¢y = (¢n)/ VN, the pion condensate, py =
(¢1)/V/N, and the condensate of the auxiliary field, iM?> = (a). The fluctuations of the fields
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are suppressed with respect to the condensates by the factor 1/ V/N. This ensures that the NLO
contribution to the effective action is given by a simple Gaussian integral over the fluctuations. The
effective potential up to NLO thus becomes
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where m?> = M? — u,z, @, is the bosonic Matsubara frequency, and we used a compact notation for
the sum-integral over the four-momentum P = (i®,, j). Also, we denoted
1 o3 pg(P?+m?) 1 1 1

I(PM)=—+ - '
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The leading-order (LO) effective potential is given by the first line of Eq. (2.1). The sum-integral
involved is divergent, but the divergence can, after regularization using a four-dimensional Eu-
clidean cutoff, be absorbed into renormalization of the parameters f2 and 1/A. The requirement of
the stationarity of the effective potential leads to a set of gap equations, whose solution yields the
standard phase diagram [6].

3. Next-to-leading order

The NLO effective potential is given by the second line of Eq. (2.1). The last two terms
represent the correction to the pressure of the free pion gas induced by a finite chemical potential.
With a four-dimensional cutoff (which is crucial for the successful renormalization at the next-to-
leading order), they give rise to an unphysical y;-dependent quadratic divergence. In the following,
we therefore restrict ourselves to finite temperature, but zero chemical potential.

In general, the NLO effective potential has to be evaluated numerically. However, its divergent
part can be calculated analytically [2, 3]. The coefficient of the quadratic divergence depends
explicitly on temperature; this dependence disappears only when the LO gap equation for M is used.
This suggests the necessity for a reinterpretation of the effective potential [5]. Since the auxiliary
field a was introduced as a composite operator of ¢;, it may give rise to unphysical features of the
effective potential. Once it is eliminated using its LO equation of motion, the resulting effective
potential as a function of ¢; alone can be renormalized in the usual manner. Using this elimination
procedure, we renormalized the NLO effective potential and solved the gap equation for the chiral
condensate. The results are shown in Fig. 1. The numerical values were obtained with f; =47 MeV
(differing by a factor 1/2 from the conventional value), A = 30, renormalized at the scale 100 MeV,
and H = (104MeV)?, adjusted in order to reproduce the physical pion mass in the vacuum.

Apart from a direct extremization of the effective potential, one may attempt to solve the gap
equation by a systematic expansion in powers of 1/N. Write generally the effective potential per
degree of freedom as V(¢) = Vo(¢) +xVi(¢), where Vo | denote the LO and NLO contributions.
Apparently, setting x = 0 restricts the effective potential to its LO value, while xo = 1/4 recovers the
NLO result. Treating x as a continuous variable, i.e., demanding that the gap equation dV /d¢ =0
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Figure 1: Chiral condensate as a function of temperature in the chiral limit (left panel) and at the physical
point (right panel). LO (dashed line) and NLO (solid red line) values are compared. For explanation of the
green and blue lines see the text.

be satisfied for all x € [0, xp], one derives a formal integral equation for the condensate,

Caior [P V00
¢ (x0) = ¢(0) /o PTG 00

Assuming that the second derivative of the effective potential is constant (that is, approximating it
at the LO point by a parabola), we find the explicit expression

X0V1/(¢ (0))
P00 =00 60 + 0V (00))
This is the green line in Fig. 1. Note that the formal 1/N expansion to the next-to-leading order
would require neglecting V{’ in the denominator (blue line in Fig. 1). Obviously this is not a good
approximation: It overshoots the NLO correction to the chiral condensate by nearly 100%.
In Fig. 2 we display the dependence of the NLO critical temperature on the renormalized cou-
pling. While the weak-coupling analytic calculation predicts a negative correction, T, = \/% fr»

the numerical results show that at strong coupling, the critical temperature is increased by the NLO
correction. Even though the auxiliary-field technique does not allow us to check the weak-coupling
limit directly, the decreasing trend towards smaller values of the coupling is reassuring. Finally,
from the solution of the gap equation near the critical temperature we were able to extract the
critical exponent, which governs the scaling of the order parameter. The numerical value is in
agreement with the analytic NLO expression, v = % — #.

To conclude, we have shown that the NLO effective potential of the O(N) model can be con-
sistently renormalized in a temperature-independent manner provided one uses the LO equation of
motion to eliminate the auxiliary field before renormalization. We used this strategy to solve the
NLO gap equation and proposed a simple semi-analytic approximation to the NLO chiral conden-
sate which is very close to the exact value. We also investigated the coupling-dependence of the
NLO critical temperature and found that the NLO correction is negative at weak coupling, but posi-
tive at strong coupling. In general, the NLO corrections to the observables turn out to be consistent

with the 1/N expansion, i.e., roughly of the order of ten percent.
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Figure 2: NLO critical temperature as a function of the coupling. The dashed line denotes the LO (coupling-
independent) value, while the dotted line indicates the NLO weak-coupling limit.
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