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1. Introduction

Matsui and Satz [1] proposed long time ago the melting of rloaium states due to color
screening can signal the formation of Quark Gluon Plasmaavion collisions. The suppression
of the electrons frond/ is observed both at RHIC and SPS [2], however, its interpogtas not
quite understood. This phenomenon has been studied quéasively in potential models [3],
based either on models or finite temperature lattice QCDOtsekr the heavy quark potential in a
non-relativistic Schrodinger equation. Depending on thvenfof the heavy quark potential used,
the dissociation temperature of charmonium can be ranged §hortly above J up to values
similar to those obtained in lattice QCD [4]. With the la#tiQCD approach, the properties of
the charmonium, which can be directly seen from the spefuraition, is enclosed in the lattice
QCD calculated euclidean time correlation functions. Ttoaot the spectral functions from the
correlation function, Maximum Entropy Method [5] is norrdyalised.

Here we contribute an operational approach to address-imedium behavior of charmonium
and address the issue of the default model dependence qidbiea function obtained from MEM.

2. Lattice correlators and spectral functions
We look into the momentum-projected Matsubara correlators

G(1,p,T) = ¥ €7 < 3u(1,93(0,0) >7, (2.1)
X

whereJy is a suitable mesonic operatd,is the spatial momentum, T is the temperature of the
gluonic plasma and the Euclidean time [0,1/T). Through analytic calculation, the Matsubara
correlator can be related to the hadronic spectral fun@gothe following:

cosiw(T — 4))
sinh(3%) ’
Extracting the spectral function at finite temperaturadatQCD is hampered mainly by two

issues: the physical extent of time is restricted by the &ratpre,r < 1/T, and the finite number
of correlator points making the inversion of Eq. 2.2 ill-posed.

Gu(r.p) = | ” dwoy (. B,T) (2.2)

3. Charmonium correlators

First, we analyze the sensitivity of the correlators to thectral function by using the two
following references correlators:

Go(T,T):/OOOde(OO,T:O)K(T,T), Gfree(r,T):/Omdwofree(w,T)K(r,T), (3.2)

where Gy(7,T) is so called "reconstructed" correlator, aBglee(7,T) is the free correlator at
finite T. Go(7,T) andGyree(T, T) show the behavior if the spectral function at temperatureefew

Iwhat's more, the correlator points are not precise but witistical errors
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Figure1: Ratio of correlatoG(t,T) to Go(T, T) versust T: with different width of the resonance (left) and
different threshold of the continuum (right).

identical to that at T=0 and at free limit, respectively. Thtos of the finite T correlators to these

two references are:
G(r,T) G(r,T)

=BTy e Gt 1)
thenRy =~ 1 andR¢ee ~ 1 indicate the bound state still exist and already melt,aetiygely.

We consider the spectral function as a combination of thenaasce and the continuung: =
or + oc. For the spectral function of the resonance, the followorgfis taken for T=00; (w, T =
0) = 6(w — M), where M donates the mass of resonance. And at finite tenuper@t we take
the spectral function of the resonance to have the relaGvigreit-Wigner form of o, (w,y) =
N(V)%{ﬁg_wy}- wherey is the width of the resonance, andy){s the normalization factor
to maintain the relativistic Breit-Wigner the same strénag the delta function. For the continuum
part of the spectral function, we take the formulaggf= g3, w’tanh(2),/1— (2)2 (2+(2)?),
where s is threshold of the continuum, for T=0- 59 = 4.5 GeV, for the free case, s=2m (m is
mass of the quark), for finite T, s is T dependent.

The ratioRy is shown in the Fig. 1, in which the left plot is with differemélues of the
resonance’s width and the right plot is with different vawé the continuum’s threshold. We can
see that both increasing the resonance’s width and deegetis continuum’s threshold can make
Ro go farther away from the unity. The influence of the resonawith the width of 0.9 GeV only
making a deviation of 9% at the symmetry point, is much smétlan that of the continuum, with
threshold being 0.8 GeV smaller theg¥4.5 GeV making a difference of 20%. The raigee With
different values of the width of resonance and differentigalof the threshold of the continuum is
shown in the left and right plot of Fig. 2, respectively. Samto Ry, the influence of the resonance
is smaller than that of the continuum.

(3.2)

4. Reliability of MEM

After checking the charmonium on the correlator level, wejoing to the spectral function
level. The normal technique to extract the spectral funsticom the correlator is the MEM,
by maximizing a functionQ(o;a) = aSo] — L[g]. L[o] is the usual likelihood function and
minimized in the standarg? fit. The Shannon-Jayes entroBio] is defined as

o(w)

Sio] = [ dwlo(@) - m(w) - o(@)og( ). @)

m(w)
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Figure 2: Ratio of correlatoiG(T,T) to Gyree(T, T) versusrT: with different width of the resonance (left)
and different threshold of the continuum (right).

wherem(w) is the default model (DM hereafter) and should be given asuasible form ofo (w).

a is a real and positive parameter which controls the relatregght of the entropy S and the
likelihood function L. The final outputr, is determined from a weighted average oaeiog,; ~
Jda oy (w)P[a|Dm]|, where the most probable spectral functmy(w) for given a is obtained by
maximizing the Q andP[a|Dm| is the weight factor. The DM is very important as it strongly

Sdot

5l
Tl
ehol

o’
°
b

0 0.5 1 15 2 25 3 35

Figure 3: The DM dependence of spectral function obtained from MEM.

affects the output of the MEM when the quality of the data i sudficient. As we’re focusing
on the modification of the ground state of the spectral femgtihe nature choice of the DM is the
asymptotic behavior of the spectral function at lacgén the free limit. Fig. 3 shows the outputs
of the MEM when using different default modelsi(w) = F * 3, w?). The black line is the input
spectral function (one resonance plus continuum) and thek mata is obtained by adding random
Gaussian noises. All the three default models reproducdottagion of the resonance well, in
which the one with F=1 (has the same largdehavior as the input spectral function) gives the
most reliable image. For the one with F=3, the output getgled)after the resonance, which is
normally considered as "lattice artifacts” but could alsalie "MEM artifacts” [4]. At this point,

it could be better to use the free lattice spectral functigjrag the DM in practice.

However, due to the lattice cutoff, such an asymptotic behglike DM with F=1) is not so
obvious and can not be obtained directly in the lattice satiom. It could be helpful to look into
the weight factor distributions and the correlators calted from the default models, which are
shown in Fig. 4. When one puts some physical prior infornmatico the DM, it could be better
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Figure 4: Weight factor distribution (left, for the visibility, thergen line and the blue line are vertically
multiplied by 10 and 18 respectively), correlators calculated from the DM anditipait correlators (right).

that the correlators calculated from the DM is somehow caaiga to the lattice correlator data
(and consequently the larger peak location or amplitudaefteight factor function, see left panel
of Fig. 4) rather than some orders of differences (see righepof Fig. 4). And one also has to
keep in mind that, no matter what kind of DM used, the coroefatthat calculated from the output
spectral functions that obtained from the MEM, can alwaysgduce the lattice correlator data
within the errors. This essentially accents the importasicihe prior knowledge of the spectral
function to put into the DM and a careful analysis of the DM elegience.

5. Summary

Within current scenario of the spectral function, the data is more sensitive to the change
of the continuum part than the resonance part, which male®xploration of the resonance’s
properties more difficult. For the frequently used methodNlJit may also produce some arti-
facts. As MEM can always reproduce the lattice correlatoa,dés very important to put as much
physical information as possible into the DM. When one iggigus about some parts of the
spectral function from the MEM, it could be helpful to lookdrthe correlators calculated from the
default models and the weight factor distributions. In #iniglysis the zero mode contribution [7]
is not included, which requires further research.
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