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1. Introduction

More than 20 years ago Matsui and Satz [1] proposed theJ/ψ suppression due to Debye
screening as a signature of the onset of deconfinement, triggering a lot of experimental efforts
to measure its yields in high-energy nucleus-nucleus collisions. On the theory side in the last
few years quite precise lattice data became available, both for theQQ free-energies [2] and the
in-medium correlators of quarkonia [3]. This, hopefully, should make possible a more solid quan-
titative study of the problem. Quite surprisingly the spectral functions extracted from the tem-
poral correlators of quarkonia turned out to display well-defined peaks, reflecting the presence of
bound/resonant states till temperatures of order 2Tc, at least in the s-wave channels. Various at-
tempts were done in order to interpret both the above large melting temperatures [4, 5] and the
charmonia correlators themselves [6, 7] in terms of screened potential models. The latter repre-
sents a quite economic way of accounting for medium effects, which is often employed to describe
the interaction between charged particles in a polarizable medium. However, beside checking the
numerical agreement of the findings obtained in the two approaches, it would be of interest to see
such a medium-modifiedQQ potential arising from a first principle calculation. Different papers
appeared quite recently addressing this issue [8, 9, 10]. Here we wish toanswer a few very general
questions concerning the description of aQQ pair in a hot plasma: whether it is possible to give a
solid theoretical basis to the concept of an effective in-medium potential; if so, which is its link with
theQQ free-energy obtained from the imaginary-time propagator of a static pair ofheavy quarks;
finally, whether, beside the screening of the interaction it is possible, within the same framework,
to account also for other effects, like the collisional damping.

2. The QQ propagator in the complex time plane

We start our investigation from the following propagator

G>(t,r1; t,r2|0,r′1;0,r′2)≡〈χ(t,r2)ψ(t,r1)ψ†(0,r′1)χ†(0,r′2)〉≡〈J(t,r1,r2)J
†(0,r′1,r

′
2)〉 (2.1)

of aQQ pair created at time 0 and annihilated at timet. From its spectral decomposition it follows
thatG>(t) is an analytic function of the (complex) timet in the strip−β ≤ Im t ≤ 0. In the case of
static quarks the above propagator reduces to

G>
M=∞(t,r1; t,r2|0,r′1;0,r′2)≡δ (r1− r′1)δ (r2− r′2)G(t,r1− r2). (2.2)

The analyticity ofG>(t) allows to follow its evolution for imaginary times. In particular, in the
static case, its value atτ =β ≡ 1/T

G(t =−iβ ,r1− r2) = e−β∆FQQ(r1−r2), (2.3)

gives the change of free-energy occurring once aQQpair is added into a finite-temperature medium.
The latter is also the quantity provided by the lattice-QCD simulations of Polyakov linecorrelators1

[11], hence its interest in the present contest.

1The evolution of a static quark fromτ =0 to τ =β is in fact described by a Polyakov line.
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In [8] the authors proposed the following strategy to properly define areal-timepotential. One
assumes that, for static quarks,G>(t) obeys an equation like (with simplified notation)

[i∂t −V(t, r)]G>
M=∞(t) = 0. (2.4)

One can then evaluateG>(t) at the lowest order of the HTL resummed perturbative expansion
asG>(t) = G>

(0)(t) + G>
(2)(t) + . . . , plug it into Eq. (2.4), identifying in such a way the leading

contribution to the effective real-timeQQ potential

V(t, r) = V(2)(t, r)+ . . . (2.5)

The latter is then employed in the dynamical problem with finite-mass quarks,

[i∂t −T −V(2)(t, r)]G>(t) = 0, (2.6)

implicitly assuming that also in this case the pair propagator obeys a closed Schrödinger equation.
The above procedure isfar from trivial. In general in fact the temporal evolution of an−

particlepropagator is part of an infinite hierarchy of coupled equations. Is it possible to find some
physical systems which share many relevant features with the QGP, but for which one can get a
closed Schrödinger equation for the heavy-pair propagatorG>(t) from a first-principle calculation?
A hot QED plasma of photons, electrons and positrons will answer to our purposes and will be the
subject of the next section.

3. The QQ propagator in a hot QED plasma

We concentrate on the case of a static pair and in order to evaluate its evolutionin the complex-
time plane we proceed as follows. The propagator in a given backgroundconfiguration of the gauge
field is given by the product of two Wilson lines

GA(t,r1,r2)= exp

(

ig
∫ t

0
dt′A0(r1, t

′)

)

exp

(

−ig
∫ t

0
dt′A0(r2, t

′)

)

≡ exp

(

i
∫

d4zJµ(z)Aµ(z)

)

.

(3.1)
One should then average over all the possible field configurations with an action accounting for
medium effects:

G(t,r1− r2) = Z−1
∫

[DA]GA(t,r1,r2)eiS[A]. (3.2)

For the latter a convenient choice is the HTL effective action, which allows toproperly include the
most relevant medium corrections to the propagation of long wave-length modes (λsoft∼1/gT). It
can be expressed in terms of the time-ordered (along the usual Schwinger-Keldysh contourC in the
complex-time plane described in [9]) photon propagator

Dµν(x−y) ≡ i θC(x0−y0)〈Aµ(x)Aν(y)〉+ i θC(y0−x0)〈Aν(y)Aµ(x)〉, (3.3)

taken in the HTL approximation, and reads

SHTL
C [A] = −

1
2

∫

C
d4x

∫

C
d4yAµ(x)

(

D−1)HTL

µν (x−y)Aν(y). (3.4)

Being the above action gaussian allows to perform the functional integral exactly getting

G(t,r1− r2) = exp

[

i
2

∫

C
d4x

∫

C
d4yJµ(x)DHTL

µν (x−y)Jν(y)

]

. (3.5)
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3.1 Real-time propagation

A QQ pair propagating along the real-time axis is described by the current

Jµ(z) = δ µ0θ(z0)θ(t −z0)[gδ (z− r1)−gδ (z− r2)], (3.6)

which leads to

G(t,r1−r2)=exp

[

2ig2
∫

dω
2π

∫

dq
(2π)3

1−cos(ωt)
ω2

(

1−eiq·(r1−r2)
)

D00(ω ,q)

]

, (3.7)

where the FT of the time-ordered propagator (which we take in Coulomb gauge) can be expressed
in terms of the HTL photon spectral function as follows [9]:

D00(ω ,q) =
−1
q2 +

∫ +∞

−∞

dq0

2π
ρL(q0,q)

q0− (ω + iη)
+ iρL(ω ,q)N(ω) . (3.8)

The above exact exponentiation,occurring in the case of a gaussian action, allows an immediate
identification of the real-time potentialV(t, r) defined implicitly in Eq. (2.4). It is of interest, in
particular, to consider the large-time behavior of the above propagator, which results governed by
the static limit of the HTL photon propagator. One has:

lim
t→+∞

[i∂t −Veff(r1− r2)]G(t,r1− r2) = 0, (3.9)

with the in-medium effective potential we were looking for given by

Veff(r1− r2)≡ g2
∫

dq
(2π)3

(

1−eiq·(r1−r2)
)[ 1

q2 +m2
D

− i
πm2

DT

|q|(q2 +m2
D)2

]

=−
g2

4π

[

mD +
e−mDr

r

]

− i
g2T
4π

φ(mDr). (3.10)

The above potential, arising here from a first-principle calculation, embodies medium effects both
in its real part, with the screening of the interaction and the heavy-quark self-energy correction (its
finite value requires subtracting the vacuum Coulomb self-interaction), andin its imaginary part
related to thesoft collisionswith the plasma particles suffered by the heavy quarks. Note that the
self-energy correction is crucial to ensure that medium effects vanish for very small separations
and that an effective potential of the kind

Veff(r) = −αmD −
α
r

e−mDr (3.11)

is known in solid-state physics as Ecker-Weitzel potential [12], often employed in the study of
excitons in semiconductors.

In [8] the propagator in Eq. (2.1) was given a gauge invariant definitionby joining the heavy
quark fields with two Wilson lines. However for the study of thet →∞ behavior this is of no
consequence since only the diagrams with all the vertices attached to the long sides of the resulting
Wilson loop give the leading contribution. The situation is different in considering the imaginary-
time evolution, which occurs only tillτ =β . The latter will be addressed in the next section.
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3.2 Imaginary-time propagation

We now consider theQQ propagation along the imaginary-time axis. It can be expressed in
terms of the Matsubara (HTL resummed) photon propagator

G(−iτ,r1−r2) = exp

[

g2
∫ τ

0
dτ ′

∫ τ

0
dτ ′′

∫

dq
(2π)3

(

1−eiq·(r1−r2)
)

∆L(τ ′−τ ′′,q)

]

, (3.12)

obtaining

G(−iτ,r1− r2) = exp

{

g2
∫

dq
(2π)3

(

1−eiq·(r1−r2)
)

(

−1
q2 +

∫

dq0

2π
ρL(q0,q)

q0

)

τ
}

×

×exp

{

g2
∫

dq
(2π)3

(

1−eiq·(r1−r2)
)

∫

dq0

2π
ρL(q0,q)

(q0)2 (e−q0τ −1)(1+N(q0))

}

×

×exp

{

g2
∫

dq
(2π)3

(

1−eiq·(r1−r2)
)

∫

dq0

2π
ρL(q0,q)

(q0)2 (eq0τ −1)N(q0)

}

. (3.13)

Its value atτ =β

G(−iβ ,r1−r2) = exp

{

−βg2
∫

dq
(2π)3

(

1−eiq·(r1−r2)
) 1

q2 +m2
D

}

(3.14)

allows (after subtracting the divergent vacuum contribution to the heavy-quark self-energy) to iden-
tify the QQ free-energy, getting:

∆FQQ(r,T) = −
g2mD

4π
−

g2

4π
e−mDr

r
. (3.15)

Note that the correlation function from which the latter was obtained, and which represents a sim-
plified version of the usual Polyakov-line correlator evaluated in lattice-QCD, is indeed a gauge-
dependent quantity. This issue was carefully examined in [13, 14], where the usual strategy of ex-
tracting an in-medium effective potential from the lattice color-singlet free-energy was criticized.
What we can say after our investigation is that, at least in the case of a QED plasma for which an
exact exponentiation holds,the QQ free-energy evaluated in the Coulomb gauge coincides with the
real part of the effective potential governing the large-time evolution of thepair propagator. On the
other hand, by looking only at the imaginary-time correlator atτ =β , one looses any information
about the collisional broadening suffered by the pair.

4. Conclusions

We addressed some very general aspects related to the propagation of aheavyQQ pair (used
as an external probe to study medium properties) in a hot plasma. For the sake of simplicity we
focused on the QED case. Medium corrections to the propagation of long wave-length modes are
correctly described by the HTL effective action, which, for a QED plasma, turns out to be gaussian.
This allows to get, for a static heavy-quark pair, an exact exponentiation of the resummed photon
propagator leading to a closed Schrödinger equation governing the temporal evolution of theQQ
propagator, with an effective potential containing both a real (related to screening) and an imaginary
part (related to soft collisions, i.e. Landau damping).
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At least two questions require further investigation. The first one is to study whether an
exponentiation similar to the one we found holds also in the QCD case [15]. Thesecond one is to
consider the propagation of afinite-mass QQ pair, checking whether the ansatz of a closed
Schrödinger equation forG>(t) is justified or a more refined strategy is required. This is presently
the object of our efforts.
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