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1. Introduction

The purpose of this brief note is to present a recently sugdetefinition of the finite-temperature
static potential from first principles, which can be dirgettlated to the quarkonium spectral func-
tion. This so calledeal-time static potentia]l] is calculated using resummed perturbation theory
to leading order. The method of real-time lattice simuladids introduced to analyse corrections
due to non-perturbative physics present in the classicél &if the theory. For related work on this
subject see also [2, 3].

2. Real-time static potential

In analogy with potential models at vanishing temperatypetantialV (t,r) is defined by assuming
the time evolution of the mesonic correlator,

C(tr) = [dx (Pt x+ )Wt x— 5)F0.0yp(0.0)), (2.1)

to be governed by the following Schroédinger equation, wiiak been shown to remain valid in a
thermal setting at leading order [4]:

i0,C%(t,r) = [ZM—%—i—V(t,r) C&(t,r). (2.2)
M denotes the mass of the constituent quarks Whileepresents a straight Wilson line connecting
the quark fields at time t. The notation follows the usual emtions in the Schwinger-Keldysh for-
malism.V (t,r) is deliberately introduced as a complex quantity with thagmary part parametris-
ing damping effects induced by the medium, thus genergligie concept of a potential to a ther-
mal setting. To parametrise the evolution of the correlatolarge times the potentid(r) is
subsequently defined as the infinite time limit\oft,r). Focusing on infinitely heavy quarks the
amplitudeC?L(t,r) is represented by a Wilson loop of spatial exteand temporal extertupon
introduction of another point splitting. Ambiguities dwettime and path ordering can be avoided
by replacing the Wightman propagator with the time-ordemexpagatoCi(t, r) at positive times.
The static potential, which is referred to as thal-time static potentialis thus obtained from the

relations
—_—

and iCl(t,r) = %Tr <A \ £ (2.3)

: | :
The Wilson loop is assumed to be oriented in the z-directidth .7 indicating the time-ordering.
For convenience a temporal gauge is chosen fixing the teiinybison lines to unity as indicated
by dotted lines. Summing up the series of diagrams (Figureesulting from an expansion of
the Wilson loop to first order in?, the following expression is obtained for the real-timetista
potential,

V(r) = fim iaCt(t.r) :szgZCF/

i CY(t,r
V() EJ&QW(,“

'K o

0 (k—‘;’)z(l— cosGniGlik)  (2.4)

Whereé“(k) is the Fourier transform of the time-ordered HTL gluon piagitar, which is related
to the retarded propagatéR(k) and Wightman propagat@ﬂ(k) via

Gl =GR 62— GR 4 e PG (25)
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Figure 1. Symbolic representation of the Wilson loop&{g?). Temporal Wilson lines, corresponding to
simple identity matrices, are represented by dotted limbs.end points of the time-ordered gluon propaga-
tor, represented by a wiggly line, are integrated along titid $ines.

Using the identity

: e
id(w) :tlm?, (2.6)
the real-time static potential is obtained from the statigts of the afore mentioned propagators,
d®k 1—cosk3r x ~
2 ; 2/~R 21
V() = ~0Cr [ oo g im o (Gl + G k) 27)

with a factorw? cancelling the quadratic divergency of the temporal gaugpgmator. The retarded
propagatoGR in temporal gauge is explicitly given by the expression
1 kik; 1 kik;

Ry - = (g = A
Glj(k) kz_l—IT(k) (dl k2 ) k2 _— I'IL(k) 0)2 . (28)
The longitudinal and transversal self-energies,
W, w+K| mg w? W’ —k? w4+ K|
Mo(k) =m3 | =—log—— —1 Mrk) = 2= [1— I 2.
L() D 2|k| og(}.)—|k| and T() 2 k2 20.)|k| ng—|k| ) ( 9)

develop an imaginary part fap < |k|. The Wightman propagator is readily obtained from the
retarded propagator by using the KMS condit®#(k) = —2i (ng(w) + 1)ImGR(k), which relates
both propagators in thermal equilibriumg(w) is the Bose distribution). An analytic expression
for the real-time static potential is finally obtained byerting the static limits of the propagators
into (2.7), with the real part corresponding to the usualy@etcreened potential:

d3k 1 T3 1
_ 2 _ IRRLLLY
V(0 = 6 [ ot C°Sk3”{k2+rn% : rkr<k2+m%>2}
_ G e-mpr] .g’Ce [® dzz sin(mprz)
= 7 [mD " ] —1 28 Jo B+1)2 [ T oz } (2.10)

The heavy-quarkonium spectral functipriw) is obtained by reinserting the real-time static po-
tential into the finite-mass Schrédinger equation (2.2) emgloying the relation:
1

p(w) =5 (1-e) /_ 0; dtdic2i(t, 0). 2.11)

The spectral function for bottomonium [5] shows the expagt@ening of the resonance peak with
increasing temperature which is induced by the imaginarygighe potential (Figure 2). Being the
integral transform (2.7) of the Wightman propagator, thagmary part is associated with Landau
damping. Itis important to emphasise that, while the af@abgntinuation of the potentid (i3,r)
can be identified with the singlet free energy, the real-tgtadic potential does not correspond to
this quantity (see also [6]). The static potential at fingenperature, as defined here from first
principles, can in fact not be related in a straightforwaed/wo an analogous quantity in euclidean
space.
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Figure 2: Melting of the bottomonium spectral function at finite termgtere as obtained from the non-
relativistic Schrédinger equation (2.2) using the reatetistatic potential. The figure is taken from [5].

3. Classical lattice gauge-theory simulations

Since the introduced static potential is a genuine read-timantity, the extent to which physical
results are subject to hon-perturbative corrections nelde assessed employing real-time lattice
techniques. Formally the Yang-Mills-Vlasov equations diseretised on a 3-dimensional spatial
lattice keeping the time coordinate continouus and chgoaitemporal gauge. A review of the
numerical implementation of these equations [7] is beydwmdsicope of this note and the discus-
sion will therefore restricted to the purely classical Yavils theory. The partition function of the
spatial lattice takes the following form,

! ZTr(l—Uij)—i—}Tr(Eiz) : (3.1)

NCZ <] 2
with spatial linksU; corresponding to discretised colour-magnetic fields anduceelectric fields
defined viaU; = iEiU;. The plaquette is denoted b§. A discretised form of Gauss law is in-
troduced viaG(x) = 5; [Ei(x) —U_i(X)Ei (x — Hu *(x)] = 0. To evaluate the statistical expectation
value of time dependent quantities, the partition functeupplemented by the evolution equa-
tions

7= / U, 7E 5(G)e P, H

Ui(x) =iEi(QUi(x), Ei=SEMT?, EXx) =-2mTrT* y Uj(x)], (3.2)
a 1]
which follow from a variation of the discretised Yang-Milistion with respect to link variables.
The thermalisation algorithm, generating the ensemblewfigurations according to the statistical
weight appearing in (3.1), is summarised as follows:

1. Pre-generate the spatial gauge libksvith a 3d Monte Carlo simulation.

2. Generate the electric fields from a gaussian distribjtéreq. (3.1)].

3. Project onto the space of physical configurations, satigfthe Gauss law.

4. Evolve the fields using the EOM, and repeat from step 2| tntifields have thermalised.
For details on the implementation of the full Hard-Loop iioyed theory see [7]. Focusing on the

imaginary part of the potential, which remains present sndlassical limit, a rectangular Wilson
loop of spatial extent = |r| and temporal extenitwas measured using classical and HTL-improved
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Simulation| 16.0| 12| 0.0 200 | -0.060(2)| -0.156(8)| -0.246(26)| -0.319(56)
16.0| 16 | 0.0 160 | -0.059(2)| -0.155(8)| -0.245(22)| -0.326(48)
16.0| 12| 0.211| 200 | -0.059(2)| -0.147(7)| -0.229(23)| -0.297(51)

Analytic | 16.0] » | 0.0 [ - [ -0.0601 | -0.1145 | -0.1507 | -0.1737 |

Figure3: Time-dependence of the imaginary parvdt, r) as obtained from lattice-regularized perturbation
theory and classical simulations. Below is an overview efrisults in the large-time limit [3] fof = 16.
Results from classical and full HTL-improved simulatioas, > 0) agree within error bars.

lattice simulations. In Figure 3 the time dependence of threetator is compared to a lattice-
regularised perturbative result [7]. Non-perturbativerections were found to amplify the imag-
inary part of the potential, which is extracted accordind2) in the large time limit, by up to
100%, widening the quarkonium peak in Figure 2 but leavirggghalitative structure unchanged.

4. Conclusions

The non-relativistic Schrodinger equation used in posgmtiodels for quarkonia at zero tempera-
ture is generalised to a thermal setting. The correspondialgtime static potentials derived in
leading order perturbation theory from first principlesthwan imaginary part inducing the melt-
ing of the quarkonium spectral function expected at finiteggerature. Non-perturbative processes
present in the classical limit of finite-temperature gaugmoty amplify the imaginary part of the
potential by up to 100% and thus introduce an additional wiitlg of the quarkonium resonance.
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