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We discuss a model of jet quenching, in which a parton traversing the quark-gluon plasma loses

its energy by interacting with hard thermal gluons through the exchanges by soft gluons. The hard

gluons are modeled by the Hard Thermal Loop effective theory, the soft gluons by the chromo-

magnetic condensate, the interaction mechanism between the two is Landau damping of the soft

gluons by the hard ones. Within such a model, we calculate thejet quenching parameter of a gluon

in SU(3) Yang-Mills theory and find that, when the temperature varies fromT = Tc = 270MeV

to T = 900MeV, the jet quenching parameter rises from ˆq = 0 to approximately 1.8GeV2/fm.
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Jet quenching in the gluon plasma Dmitri Antonov

At RHIC, and even more LHC, energies, radiative energy loss is the dominant mechanism for
the energy loss of a parton traversing the quark-gluon plasma. Its qualitative picture is as follows.
During the gluon’s formation timeτ ∼ ∆E

p2
⊥

, the parton propagates over the coherence lengthzc = τ
and accumulates the transverse momentum squaredp2

⊥ ∼ Q2 zc
λ , whereλ is the mean free path, and

Q2 is p2
⊥ transferred to the parton per one kick. Therefore, two scattering regimes are possible:

zc < λ , that corresponds to the incoherent scattering, andzc ∼ L‖ > λ , whereL‖ is the distance
travelled by the parton, that corresponds to the coherent scattering. In the second case, as follows
from the formulae above,∆E ∼ q̂L2

‖ (the Landau-Pomeranchuk-Migdal interference effect [1]),

whereq̂∼ Q2

λ is the so-called jet quenching parameter. Due to its proportionality toL2
‖, the radiative

energy loss is much stronger than the collisional energy loss, due to whom∆E ∝ L‖ only. More
quantitatively [2],

∆E =
αs

8
CRq̂L2

‖, where q̂ = ρ
〈

σ p2
⊥
〉

.

Here,CR is the quadratic Casimir operator of the representationRof the parton andαs is the strong
coupling constant at an appropriate scale. In a dilute plasma [2],

q̂ ∝ T3
∫

m2
D

dσ
dp2

⊥
p2
⊥d2p⊥ ∼ α2

s N2
cT3 ln

1
g

is determined by the density of scattering partnersρ ∝ T3, and dσRutherford/dp2
⊥ ∼ p−4

⊥ is cut off in
the IR at the Debye mass squared,mD(T) = gT

√

Nc/3 in SU(Nc) Yang-Mills theory.

In this talk, we summarize a recentnonperturbativecalculation [3] of the jet quenching pa-
rameter. Our approach uses the dipole formalism [4], where afaked dipole of sizeL⊥ is constructed
from the partons in theT-amplitude and in theT∗-amplitude, the trajectories of which are displaced
from each other by the distanceL⊥. The transport parameter

〈

σ p2
⊥
〉

can then be calculated through
the cross section of this faked dipole. It reads

〈

σ p2
⊥
〉

=
∫

d2p⊥
(2π)2 p2

⊥

∫

d2L⊥eip⊥L⊥
∫

d2b
〈

trV(b)V†(b + L⊥)
〉

,

whereV(b) is the Wilson line of a parton with the impact parameterb 1. The real-valued part of

the emerging Minkowskian Wilson loop
〈

WMink
L‖×L⊥

〉

=
〈

trV(b)V†(b + L⊥)
〉

defines the absorptive
interaction between the faked dipole and the medium. It is related to the jet quenching parameter
as

Re
〈

WMink
L‖×L⊥

〉

= exp

(

− q̂

4
√

2
L‖L

2
⊥

)

. (1)

A radical difference of Eq. (1) from the Minkowskian Wilson loop in the vacuum is its expo-
nential fall-off instead of the non-absorptive behavior ei(...). In our scenario of jet quenching, the
gluon plasma has two components: The chromo-magnetic condensate describes the soft compo-
nent (which alone produces the ei(...)-behavior), while the Hard Thermal Loop effective theory [5]
describes the hard component. We argue that the exponentialfall-off of Minkowskian Wilson loop

1Note that the corresponding formula of Ref. [3] has to be corrected in this way. This correction, however, does not
affect the calculation performed in that paper.
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emerges due to interactions between the parton and the on-shell hard thermal gluons. These inter-
actions are mediated by the soft gluons, which are Landau damped by the hard gluons.

We outline the main steps of our calculation. First, we consider the soft component of the
gluon plasma, which we model through the stochastic vacuum model [6]. In Euclidean space-time
atT = 0, the Wilson loop in this model can be represented in terms ofan effective local field theory
of the field-strength tensorFa

µν as [3]

〈W(C)〉 = tr
∫

DFa
µν e−SEucl[F] (2)

with the action
SEucl[F] =

1
2

∫

d4x
[

Fa
µνK (x)Fa

µν + iF a
µνtaΣµν

]

. (3)

HereΣµν(x) =
∫

Σ(C) dσµν(w(ξ ))δ (x−w(ξ )) is the surface tensor,ξ = (ξ1,ξ2), ξ1,2 ∈ [0,1], ta is
the SU(Nc)-generator in the appropriate representation,

K (x) =
N2

c −1
2π2

µ4

〈g2F2〉

(

1− ∂ 2

µ2

)5/2

,

where
〈

g2F2
〉

is the gluon condensate, andµ−1 is the vacuum correlation length. Note that we
disregard the anyhow small [7] contour×contour self-interactions of the Wilson loop, which do not
lead to the expectation value of the form of Eq. (1).

At T > Tc, the correlator
〈

Ea
i (x)Eb

k (x′)
〉

vanishes due to the deconfinement. Furthermore,
according to the lattice data [8], the correlator

〈

Ea
i (x)Bb

k(x
′)
〉

can be neglected when compared to
〈

Ba
i (x)B

b
k(x

′)
〉

. The latter can be parametrized as

〈

g2Ba
i (x)B

b
k(x

′)
〉

=

〈

g2F2
〉

T

12(N2
c −1)

δ abδike−µ(T)|x−x′|. (4)

Note that the chromo-magnetic gluon condensate
〈

g2F2
〉

T and the correlation length of the chromo-
magnetic vacuum,µ−1(T), are temperature-dependent quantities.

Due to the Euclideanx4-periodicity at finite temperature, the contourC = L‖×L⊥ effectively
splits into pieces (strips), whose extensions along thex3- andx4-axes areβ ≡ 1/T (see Fig. 1).
Equations (2)-(4) yield for the strip closest to the origin:

〈

WEucl
1−strip

〉

= tr
∫

DBa
2 e−SEucl[B], where SEucl[B] =

∫

d4x(Ba
2K Ba

2 + iBa
2t

aΣ13) , (5)

and the vector-function parametrizing the surface of the strip readswµ(ξ ) = βξ1tµ +L⊥ξ2rµ , where
tµ = (0,0,1,1), rµ = (1,0,0,0). The interaction between two strips separated by the distance βk,
wherek is an integer, reads

χk =
CR

4

∫

dσ13(w)
∫

dσ13(w
′)K −1(w−w′), where K

−1(x) =

〈

g2F2
〉

T

6(N2
c −1)

e−µ(T)|x| (6)

andw′
µ = wµ(ξ ′)+ (0,0,βk,0)µ . Accordingly, the overall contribution to the Wilson loop has the

form

− ln
〈

WEucl
L‖×L⊥

〉

=
n−1

∑
i=0

i

∑
k=0

χk =
n−1

∑
k=0

(n−k)χk, (7)
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1/T 2/T 3/T
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Figure 1: Depicted is the stack of strips representing the surface of the Wilson loop at finite temperature.
The interactions between the strips are mediated by soft gluons. The closed loop represents the hard gluon.
The mechanism of its interaction with the soft gluons is Landau damping.

wheren≡ kmax = L‖/(β
√

2) is the full number of strips.
We proceed now to the Minkowski space-time and account for the hard gluons from the heat

bath, which appear as a polarization insertion into the
〈

Ba
i (x)B

b
k(x

′)
〉

-correlator of soft gluons. By
virtue of the Hard Thermal Loop effective theory [5], we can parametrize the polarization effects
in the Minkowskian action of soft gluons as [3]

SMink [B] =
∫

d4x{Ba
2[K (x)− iP(x)]Ba

2 +Ba
2t

aΣ13},

where

P(p) = −M2(T)

p2 , M2(T) ≡ πζ (1−ζ 2)

4
m2

D(T), ζ ≡ |p0|
|p| ≪ 1.

Using in Eqs. (5)-(7)SMink [B] instead ofSEucl[B], we calculate the real-valued part of the Wilson
loop, Eq. (1). This yields the desired jet quenching parameter in the form [3]

q̂ =
CRN (T)M2(T)

4π2n

n−1

∑
k=0

(n−k)
∫ 1

−1

dx√
k2 +2kx+2x2

∫ ∞

0

dp p4J1

(

pβ
√

k2 +2kx+2x2
)

p4(p2 + µ2(T))5 +N (T)M4(T)
, (8)

where

N (T) ≡
(

2π2µ(T)
〈

g2F2
〉

T

N2
c −1

)2

andJ1 is the Bessel function. Equation (8) corresponds to the scattering of a fast parton off a hard
thermal gluon in the leading approximation∝

〈

g2F2
〉2

T . The actual values of the jet quenching
parameter can be obtained from Eq. (8) by subtracting ˆq(Tc). That means we set ˆq(Tc) = 0 since,
due to the much lower density of scattering partners in the hadronic phase, typical values of ˆq in
that phase are by two orders of magnitude smaller than in the quark-gluon plasma [9].

We calculate ˆq numerically for the case when the propagating parton is a gluon, and the theory
under study is SU(3) pure Yang-Mills, whereTc = 270MeV [10]. We define the parameterM(T)

through the perturbative one-loop strong coupling [10]:

g−2(T) = 2b0 ln
T
Λ

, where b0 =
11Nc

48π2

∣

∣

∣

Nc=3
=

11
16π2 and Λ ≃ 0.104Tc.
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The temperature-dependent chromo-magnetic condensate can be obtained from the formula [7]
〈

g2F2
〉

T = (72/π)µ2(T)σ(T) with the same lattice data [10] suggesting the parametrizations
σ(T) = [0.566g2(T)T]2 and µ(T) = 1.04g2(T)T. The coefficient 1.04 in the last equation has
been fixed by demanding the continuity with the low-temperature value [8]: µ(Tc) = 894MeV.
Furthermore, we have checked that the numerical results forq̂ are stable with respect to variations
of the parametersζ ≪ 1 andn≫ 1. For example, forζ = 0.1 we find [3]

q̂(900MeV)n=10 = 1.78GeV2/fm, q̂(900MeV)n=50 = 1.98GeV2/fm.

In the whole range of temperatures fromTc to 900MeV, a good fit to the numerical results is
provided by the function

q̂(T)fit
n=10 = 0.26(T/Tc)

3GeV2/fm.

In conclusion, we note that our results have the same order ofmagnitude as those obtained by other
nonperturbative methods, both in QCD and inN = 4 supersymmetric Yang-Mills theory. The
detailed plots and comparison with other approaches can be found in Ref. [3].
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