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Magnetic Yang-Mills Theory as an Effective Field
Theory of the Gluon Plasma

M. Baker
Department of Physics, University of Washington
Box 351560, Seattle WA 98195, USA

We propose magnetic SU(N) pure gauge theory as an effective field theory describing the long
distance nonperturbative magnetic response of the deconfined phase of Yang-Mills theory. The
magnetic non-Abelian Lagrangian, unlike that of electrodynamics where there is exact electro-
magnetic duality, is not known explicitly, but here we regard the magnetic SU(N) Yang-Mills
Lagrangian as the leading term in the long distance effective gauge theory of the plasma phase. In
this treatment, which is applicable for a range of temperatures in the interval Tc < T < 3Tc acces-
sible in heavy ion experiments, formation of the magnetic energy profile around a spatial Wilson
loop in the deconfined phase parallels the formation of an electric flux tube in the confined phase.
We use the effective theory to calculate spatial Wilson loops and the magnetic charge density in-
duced in the plasma by the corresponding color electric current loops. These calculations suggest
that the deconfined phase of Yang-Mills theory has the properties of a closely-packed fluid of
magnetically charged composite objects.
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Magnetic Yang-Mills Theory of the Gluon Plasma

1. Introduction

The confined phase of SU(N) Yang-Mills theory can be described by an effective theory cou-
pling magnetic SU(N) gauge potentials Cµ to three adjoint representation Higgs fields [1]. In the
confined phase the magnetic gauge symmetry is completely broken via a dual Higgs mechanism in
which all particles become massive. The value φ0 of the magnetic Higgs condensate is determined
by the location of the minimum in the Higgs potential, and the dual gluon acquires a mass

Mg ∼ gmφ0 , (1.1)

where gm is the magnetic gauge coupling constant. The coupling of the potentials Cµ to the mag-
netically charged Higgs fields generates color magnetic currents which, via a dual Meissner effect,
confine ZN electric flux to narrow tubes connecting a quark-antiquark pair [2]. For SU(3), the dual
gluon mass Mg ∼ 1.95

√
σ [3]. The effective theory is applicable at distances greater than the flux

tube radius RFT ∼ 1
Mg
∼ 0.3 f m. Since SU(3) lattice simulations [4] yield a deconfinement temper-

ature Tc ≈ 0.65
√

σ , the scale Mg ∼ 3Tc. Thus there is a range of temperatures within the interval
Tc < T < 3Tc where the effective theory should also be applicable in the deconfined phase.

2. Effective Magnetic Yang-Mills Theory of the Deconfined Phase.

Above Tc the Higgs condensate vanishes, so the magnetic gluon becomes massless. We as-
sume that the Higgs fields do not play an essential role in the deconfined phase [5]. The effective
theory then reduces to pure SU(N) Yang-Mills theory of magnetic gauge potentials Cµ ≡ (C0,~C).
This theory has the same form as the microscopic electric theory, but with a fixed gauge coupling
constant gm ∼ 3.91 and fixed ultraviolet cutoff Mg ∼ 3Tc ∼ 800MeV , values determined by the
effective theory description of the confined phase. The resulting long wavelength magnetic gluons,
which at T = 0 confine ZN electric flux, are the elementary degrees of freedom for T > Tc.

We regard magnetic SU(N) gauge theory as an effective field theory appropriate for calculating
the long distance magnetic response of the gluon plasma. The dual effective Lagrangian Le f f (Cµ)
contains all combinations of Cµ invariant under magnetic non-Abelian gauge transformations:

Le f f (Cµ) = 2tr
[
−1

4
GµνGµν + · · ·

]
, (2.1)

where

Gµν = ∂µCν −∂νCµ − igm[Cµ ,Cν ] . (2.2)

Here we retain only the leading term in Le f f , pure magnetic Yang-Mills theory.
We use effective magnetic Yang-Mills theory to calculate spatial Wilson loops measuring ZN

magnetic flux k passing through a loop L. These loops are obtained from the partition function of
the magnetic theory in the presence of a current of k quarks circulating around the loop L, producing
a steady current 2πT

gm
Yk, where Yk is a diagonal matrix with the property e2πiYk = e2πi k

N [6]. This

current is the source of an external magnetostatic scalar potential, Cext
0 = 2πT

gm
Yk

ΩS(~x)
4π

, where ΩS(~x)

is the solid angle subtended at the point~x by a surface S bounded by the loop L. Then ~∇Cext
0 =~BBS,
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Magnetic Yang-Mills Theory of the Gluon Plasma

the Biot-Savart magnetic field of the current loop. (The color magnetic field~B j = G0 j.) The spatial
Wilson loop of Yang-Mills theory, calculated in the effective magnetic gauge theory, is then the
partition function of the magnetic theory in the presence of the external potential Cext

0 .

3. The Spatial Wilson Loop Calculated in the Magnetic Theory.

To evaluate the partition function of the magnetic theory in the deconfined phase, where there
is no Higgs potential, we must calculate the one loop effective potential U(C0) of magnetic Yang-
Mills theory in the background of a static magnetic scalar potential C0:

e−
∫

d~x U(C0)
T ≡ e−S1−loop(C0) = Det

(
−D2

ad j(C0)
)

. (3.1)

U(C0) is the counterpart in the deconfined phase of the classical Higgs potential generating electric
flux tube solutions in the confined phase, and gives rise to the spontaneous breakdown of the ZN

symmetry of the effective magnetic gauge theory. We evaluate U(C0) integrating over the massless
modes of magnetic Yang-Mills theory, introducing a Pauli-Villars regulator mass M. This mass
should approximately be equal to the dual gluon mass Mg determining the maximum energy of the
modes included in the effective theory. Aside from the presence of the regulator, the calculation of
U(C0) mimics the calculation [7, 8] of the one loop effective potential U(A0) in Yang-Mills theory
used [10, 11] to calculate the spatial ’t Hooft loop [12, 13] . We assume that the background po-
tential C0 has the same Abelian color structure as Cext

0 , i.e., C0 = 2πT
gm

C0(~x)Yk. The corresponding
dimensionless effective potential U(C0,

T
M ) is then a periodic function of C0 with period 1. The

resulting expression for the one loop effective action S1−loop(C0) is given by [5]

S1−loop(C0) =
4π2

√
3k(N− k)

N3/2g3
m

∫
d~xU(C0,

T
M

) , (3.2)

where

U(C0,
T
M

) =
[
[C0]

2(1− [C0])2− 3
4π4 I(C0,

T
M

)
]

, (3.3)

and

I(C0,
T
M

) =
∫

∞

0
dy y2log

cosh
√

y2 +(M
T )2− cos(2πC0)

cosh
√

y2 +(M
T )2−1

 , (3.4)

with [C0]≡ |C0|mod1. The integral I(C0,
T
M ) suppresses the short distance contribution to U(C0).

We separate the background scalar potential C0 into the contribution ΩS
4π

of the external poten-
tial and a remaining contribution c0 whose sources are the magnetic charges of the plasma:

C0 = c0 +
ΩS

4π
. (3.5)

Then making the replacement (3.5) in S1−loop and adding the magnetic energy (~∇c0)2 of the in-
duced magnetic charges gives the effective action Se f f (c0):

Se f f (c0) =
4π2

√
3k(N− k)

N3/2g3
m

∫
d~x

[
(~∇c0)2 +U(c0 +

ΩS

4π
)
]
. (3.6)
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Magnetic Yang-Mills Theory of the Gluon Plasma

The action (3.6) generates a mass scale NgmT
3 and a corresponding distance scale which is used in

Eqs. (3.2) and (3.6). For T > Tc the scale NgmT
3 is greater than the cutoff M so that we can use Se f f

at the classical level to determine the leading long distance behavior of spatial Wilson loops in the
deconfined phase in the same manner that the classical gauge-Higgs action was used to evaluate
temporal Wilson loops in the confined phase.

The minimization of Se f f (c0) yields "Poisson’s equation" for c0:

∇
2c0(~x) = ρmag(~x) , (3.7)

where

ρmag(~x) =
1
2

dU(c0 + ΩS
4π

, T
M )

dc0
(3.8)

is the color magnetic charge density induced in the vacuum by the current loop. The boundary
conditions on c0 are: for ~x on L, c0(~x)→ 0, and as ~x → ∞, c0(~x)→−ΩS(~x)

4π
. The latter condition

means that the induced magnetic charges screen the external field so that the total field ~B(~x) =
~∇c0 +~BBS has an exponential falloff determined by the "Debye" magnetic screening mass mmag(T ).
In unscaled units

m2
mag(T ) =

Ngm
2T 2

6
d2U(C0,

T
M )

dC2
0

∣∣∣∣
C0=0

. (3.9)

The value Se f f (L) of Se f f (c0) at its minimum determines the spatial Wilson loop W (L) = e−Se f f (L).

Figure 1: Comparison of SU(3) 4d lattice data (dots) [14] for the spatial string tension σ(T ) with the
prediction of the effective magnetic Yang-Mills theory for four values of the Pauli-Villars regulator mass M.

4. Spatial String Tension and Induced Magnetic Charge Density

As L → ∞ , Se f f (L) → L2σk(T ), determining the spatial string tension σk(T ). In this limit
the solid angle ΩS = −2π for z > 0 and 2π for z < 0, where z = 0 is the plane of the loop L. The
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Figure 2: Induced magnetic charge densities ρ(z) outside a large Wilson loop for varying temperatures.

boundary condition at large distances becomes c0 →±1
2 as z →±∞, and c0 becomes a function

only of z. Evaluating Se f f (c0) at the "classical" solution c0(z) yields:

σk(T )
T 2 =

8π2k(N− k)
∫ 1

0 dC0

√
U(C0,

T
M )

gm
√

3N
. (4.1)

Eq. (4.1) is valid for any SU(N) group, but the values of gm and Mg have been determined
only for SU(3) where the effective theory has been applied in the confined phase. The temperature
dependence of the ratio σk(T )

T 2 comes from the Pauli-Villars cutoff, which suppresses the contribu-
tions of momenta greater than M to the effective potential (3.3) and consequently to σk(T ). Since
the Pauli-Villars regulator is rather "soft", allowing substantial contributions from momenta greater
than M, we have also evaluated the string tension using values of M smaller than Mg ∼ 800MeV .
In Fig. 1 we plot T√

σ(T )
, Eq. (4.1) for SU(3), as a function of T

Tc
for a range of values of M and

compare with the results of 4d lattice simulations [14]. (Values of M lying between 600MeV and
650MeV give the best fits to the lattice data in the temperature interval Tc < T < 3Tc.)

In Fig. 2 we plot, for a range of temperatures using M = 600MeV , the magnetic charge
density (3.8) induced by a large Wilson loop as a function of the distance from the loop. For these
temperatures the induced distributions ρ(z) of magnetic charge have maxima for values of z close to
1
M ∼ 0.33 f m. This can be understood since 1

M is the shortest wavelength of the quanta contributing
to U and hence determines the spatial extension of the magnetically charged objects described by
effective theory. Their "size" 1

M is greater than the magnetic screening length 1
mmag(T ) determining

the exponential tail of the charge distributions as z→ ∞.
In a dilute plasma of charged ions the size of the ion cloud is determined by the Debye screen-

ing length which is much larger than the mean separation between the ions. By contrast, in the
gluon plasma the mean distance between the extended charges, determined by their intrinsic size
∼ 1

M , is greater than the screening length characterizing the tail of the distribution. This gives a
physical picture of the gluon plasma as a dense (closely-packed) liquid of extended magnetically
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charged objects. Comparison of the plots in Fig. 2 with correlation functions calculated in lattice
simulations of Yang-Mills theory [15, 16] could check this picture.

5. Summary

According to our picture, the plasma phase of SU(N) Yang-Mills theory in a temperature range
included the interval Tc < T < 3Tc is described by effective magnetic SU(N) gauge theory. Inte-
grating out the long wavelength non-Abelian degrees of freedom gives rise to extended magnetic
charges confining magnetic flux, which are the counterpart in the deconfined phase of magnetic
currents confining electric flux in the confined phase. Extension of our work to calculate non-
equilibrium quantities would make it possible to use effective magnetic gauge theory to analyze
experiments on heavy ion collisions,
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