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Cold three flavor quark matter at large (but not asymptotically large) densities may exist in a

crystalline color superconducting phase. These phases are characterized by a gap parameter∆
that varies periodically in space, forming a crystal structure. A Ginzburg-Landau expansion in∆
shows that two crystal structures based on cubic symetry are particularly favorable, and may be

the ground state of matter at densities present in neutron star cores. We derive the effective action

for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure

formed by∆, and obtain the shear modulus from the coefficients of the spatial derivative terms.

Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger

than those of neutron star crusts. This phase of matter is thus more rigid than any known material

in the universe, but at the same time the crystalline color superconducting phase is also superfluid.

These properties raise the possibility that the presence of this phase within neutron stars may have

distinct implications for their phenomenology. For example, (some) pulsar glitches may originate

in crystalline superconducting neutron star cores.
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1. Introduction

At the extreme densities present at the cores of the neutron stars, quarks may be deconfined.
At present, the most promising direction to resolve whether quark matter is present in these com-
pact objects is to find consequences of its presence for their phenomenology, which may allow
observations to rule out or in this possibility.

According with qantum-chromodynamics (QCD), quark-quark interaction is strong and attrac-
tive between quarks that are antisymmetric in color, so we expect cold dense quark matter to be
in a color superconducting state. The critical temperatures of these phases are generically on the
order of tens of MeV, much larger than the tens of keV temperatures of neutron star cores [1]. This
implies that if quark matter is present there, it must be in a color superconducting phase, and also
allows us to work at temperatureT = 0 for the calculations we discuss below.

At asymptotic densities, where the up (u), down (d) and strange (s) quarks can all be treated as
massless, quark matter is in the Color Flavor Locked (CFL) phase [2, 1]. The CFL condensate is
antisymmetric in color and flavor indices and therefore involves pairing between quarks of different
colors and flavors. All fermionic excitations are gapped, with a gap parameter∆0∼ 10−100MeV.

However, at the cores of neutron stars, the quark number chemical potentialµ is expected to be
between350and500MeV which means thatMs, lying somewhere between its current mass of order
100MeV and its vacuum constituent mass of order500MeV, cannot be neglected. In addition bulk
matter must be in weak equilibrium and must be electrically and color neutral. These factors tend
to separate the quark Fermi surfaces by∼M2

s/µ, and thus disfavor the cross-species BCS pairing
which characterizes the CFL phase. In neutral unpaired quark matter in weak equilibrium, to lowest
order inM2

s/µ2, the quarks can be treated as if they were massless, but with chemical potential
splittings δ µ2 ≡ (µu− µs)/2 and δ µ3 ≡ (µd − µu)/2 given by δ µ2 = δ µ3 ≡ δ µ = M2

s/(8µ).
Note that the splitting between unpaired Fermi surfaces increases with decreasing density. In the
CFL phase, the Fermi momenta arenot given by these optimal values for unpaired quark matter;
instead, the system pays a free energy price∝ δ µ2µ2 to equalize all Fermi momenta and gains a
pairing energy benefit∝ ∆2

0µ2. As a function of decreasing density, there comes a point (at which
δ µ ≈ ∆0/4) when the system can lower its energy by breaking pairs [3]. Restricting the analysis
to spatially homogeneous condensates, the phase that results when CFL Cooper pairs start to break
is the gapless CFL phase [3, 4]. However, this phase turns out to be “magnetically unstable”
[5, 6, 7], meaning that it is unstable to the formation of counter-propagating currents. If∆0 is
small enough that there is a window of densities for which the gapless CFL phase has a lower free
energy than the CFL phase before nuclear matter takes over from quark matter, then some other
color superconducting phase(s) with a smaller free energy than the gapless CFL phase must be the
ground state of quark matter in this window.

Assuming such a window exists, a possible resolution of the “magnetic instability”, in parti-
cular for the the lower values of densities, is the crystalline color superconducting phase [8] which
is the QCD analogue of a form of non-BCS pairing first considered by Larkin, Ovchinnikov, Fulde
and Ferrell (LOFF) [9]. (For two alternate possibilities see [10] and [11] .) This phase is an attrac-
tive candidate in the intermediate density regime because it allows pairing to occur even with split
Fermi surfaces in the free-energetically optimal way as in the absence of pairing, by permitting
Cooper pairs with non-zero net momentum. For example, by allowingu quarks with momentum

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
4
1

The rigidity of three flavor quark matter Rishi Sharma

p+q3 to pair withd quarks with momentum−p+q3, for a fixedq3, we can pairu andd quarks
along rings on their respective Fermi surfaces [8, 12]. In coordinate space, this corresponds to a
condensate of the form〈ud〉 ∼ ∆3exp

(
2iq3 · r

)
. The net free energy gained due to pairing is then

a balance between increasing|q3| yielding pairing on larger rings while exacting a greater kinetic
energy cost. The optimum choice turns out to be|q3| = ηδ µ3 with η = 1.1997, corresponding
to pairing rings on the Fermi surfaces with opening angle67.1◦ [8]. It is possible to cover larger
areas of the Fermi surfaces by allowing Cooper pairs with the same|q3| but variousq̂3, yielding
〈ud〉 ∼ ∆3 ∑qa

3
exp

(
2i qa

3 · r
)

with the qa
3 chosen from some specified set{q3}. This is a conden-

sate modulated in position space in some crystalline pattern, with the crystal structure defined by
{q3}. In this two-flavor context, a Ginzburg-Landau analysis reveals that the best{q3} contains
eight vectors pointing at the corners of a cube, say in the(±1,±1,±1) directions in momentum
space, yielding a face-centered cubic structure in position space [12]. In the following section we
generalize the pairing ansatz to the three flavor case.

2. Three flavor crystalline color superconductivity

In Refs. [13, 14, 15] the possibility that three flavor quark matter has a crystalline color super-
conducting structure was explored. Considering the pairing of theu andd quarks with thesquark,
we use a pairing ansatz of form,

〈ψiαCγ5ψ jβ 〉 ∝ ∑
I

εIαβ εIi j ∆I ∑
qa

I ∈{qI}
exp(2iqa

I · r) . (2.1)

This is antisymmetric in color (α,β ), spin, and flavor (i, j) (where (1, 2, 3) correspond to (u, d, s)
respectively) and is thus a generalization of the CFL condensate to crystalline color superconduc-
tivity. For simplicity, we set∆1 = 0, neglecting〈ds〉 pairing because thed ands Fermi surfaces
are twice as far apart from each other as each is from the interveningu Fermi surface. Hence, the
index I can be taken to run over2 and3 only. {q2} ({q3}) defines the crystal structure of the〈us〉
(〈ud〉) condensate.

We will analyze the system in an NJL model, which gives in the mean field approximation an
interaction term

Linteraction=
1
2

ψ̄∆(r)ψ̄T +h.c., (2.2)

where the proportionality constant in (2.1) is conventionally chosen so that

∆(r) = (Cγ5)∑
I

εIαβ εIi j ∆I ∑
qa

I ∈{qI}
exp(2iqa

I · r) . (2.3)

The authors of [15] calculated the free energyΩ of several crystalline structures within the
weak coupling and Ginzburg-Landau approximations, and found two qualitative rules that guide
our understanding of what crystal structures are favored in three flavor quark matter. First, the〈ud〉
condensates separately should be chosen to have favorable free energies, as evaluated in the two
flavor model of Ref. [12]. Second, the〈ud〉 and〈us〉 condensates should be rotated relative to each
other in such a way as to maximize the angles between the wave vectors describing the crystal
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structure of the〈ud〉 condensate and the antipodes of the wave vectors describing the〈us〉 conden-
sate. This second qualitative rule can be understood as minimizing the “competition” between the
two condensates for up quarks on the up Fermi surface [15].

Two of the structures that possess these two features, called the CubeX and 2Cube45z that
we describe below, have a lowerΩ than other considered structures. One or the other of the
two, is also favored over unpaired quark matter and the gapless CFL phase over a large parameter
range [15, 16], see Fig.1 .
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Figure 1: The free energies of CubeX and 2Cube45z structures as a function ofM2
s/µ, which is proportional

to the Fermi surface splitting. For comparison we also show the free energy of the CFL phase, of the gapless
CFL phase (gCFL) and of a crystalline condensate characterized by two antipodal plane waves (2PW).

Their robustness, however goes with a large gap parameter∆, and the Ginzburg-Landau ex-
pansion parameter(∆/δ µ)2 for these phases can be as large as a fourth for some values ofµ, and
hence the approximation is at the edge of its validity. Nevertheless, their impressive robustness over
a large range ofµ relevant for cores of neutron stars, make them well motivated candidate phases to
consider for phenomenological implications. For analysis which go beyond the Ginzburg-Landau
approximation see [14, 17].

The CubeX crystal structure consists of eight vectors that belong to two sets of four vec-
tors,{q̂2} that can be taken as{(1/

√
3)(±√2,0,±1)}, the four possible combinations of the si-

gns giving the four momentum directions, and{q̂3} that can be taken as{(1√3)(0,±√2,±1)}.
The 2Cube45z crystal structure is specified by two sets of eight unit vectors; the first set{q̂2}
given by {(1/

√
3)(±1,±1,±1)} and the second one{q̂3} given by {(1/

√
3)(±√2,0,±1)} ∪

{(1/
√

3)(0,±√2,±1)}. For these structures,{q2} can be transformed to{q3} by rigid rotations,
ensuring that there are electrically neutral solutions of the gap equation with∆2 = ∆3 = ∆ [15], a
fact we will use below.
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3. Phonons

The crystalline phases of color superconducting quark matter that we have described in the
previous Section are unique among all forms of dense matter that may arise within neutron star
cores in one respect: they are rigid [18]. They are not solids in the usual sense: the quarks are not
fixed in place at the vertices of some crystal structure. Instead, in fact, these phases are superfluid
since the condensates all spontaneously break theU(1)B symmetry corresponding to quark number.
The diquark condensate, although spatially inhomogeneous, can carry supercurrents [8, 18]. And
yet, we shall see that crystalline color superconductors are rigid solids with large shear moduli. It is
the spatial modulation of the gap parameter that breaks translation invariance, and it is this pattern
of modulation that is rigid. This novel form of rigidity may sound tenuous upon first hearing, but
we shall present the effective Lagrangian that describes the phonons in the CubeX and 2Cube45z
crystalline phases, whose lowest order coefficients have been calculated in the NJL model that
we are employing [18]. We shall then extract the shear moduli from the phonon effective action,
quantifying the rigidity and indicating the presence of transverse phonons.

Phonons in the crystal correspond to space- and time-varying displacements of the crystalline
pattern [19]. In the present context, we introduce displacement fields for the〈ud〉, 〈us〉 and〈ds〉
condensates by making the replacement

∆I ∑
qa

I ∈{qI}
e2iqa

I ·r → ∆I ∑
qa

I ∈{qI}
e2iqa

I ·(r−uI (r)) (3.1)

in (2.3). One way to obtain the effective action describing the dynamics of the displacement fields
uI (r), including both its form and the values of its coefficients within the NJL model that we
are employing, is to take the mean field NJL interaction to be given by (2.2), but with (3.1), and
integrate out the fermion fields. Since the gapless fermions do not contribute to the shear modulus,
one can integrate out the fermions completely for this calculation. Note that this is not true for the
calculation of thermal or transport properties, where the gapless fermions do contribute.

Upon carrying out the fermionic functional integration, we obtain,

S[u] =
1
2

∫
d4x ∑

I

κI (3.2)

×
[(

∑
qa

I ∈{qI}
(q̂a

I )
m(q̂a

I )
n

)
(∂0um

I )(∂0un
I )−

(
∑

qa
I ∈{qI}

(q̂a
I )

m(q̂a
I )

v(q̂a
I )

n(q̂a
I )

w

)
(∂vu

m
I )(∂wun

I )

]

wherem, n, v andw are spatial indices running overx, y andzand where we have defined

κI ≡ 2µ2|∆I |2η2

π2(η2−1)
. (3.3)

For ∆1 = 0, ∆2 = ∆3 = ∆, andη ' 1.1997,

κ2 = κ3 ≡ κ ' 0.664µ2|∆2| . (3.4)

S[u] is the low energy effective action for phonons in any crystalline color superconducting
phase, valid to second order in derivatives, to second order in the gap parameters∆I and to second
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order in the phonon fieldsuI . Because we are interested in long wavelength, small amplitude,
phonon excitations, expanding to second order in derivatives and in the phonon fields is satisfactory.
The Ginzburg-Landau expansion, which gives a series in(∆/δ µ)2, is not under quantitative control
for these most favorable phases, as we discussed in the previous Section. But as we shall see, for
glitch phenomenology, the main requirement from the shear modulus calculation is that it should
be large, and given that we get much larger values than those obtained for conventional neutros star
crusts, there is at present no great motivation to go to higher orders. At this order in(∆I )2, there is
no mixing between differentuI , and they can all be treated independently.

In order to extract the shear moduli, we need to compare the phonon effective action to the
theory of elastic media [20], which requires introducing the strain tensor

smv
I ≡ 1

2

(∂um
I

∂xv +
∂uv

I

∂xm

)
. (3.5)

We then wish to compare the action (3.2) to

S[u] =
1
2

∫
d4x

(
∑
I

∑
m

ρm
I (∂0um

I )(∂0um
I )−∑

I
∑
mn
vw

λ mvnw
I smv

I snw
I

)
, (3.6)

which is the general form of the action foruI that don’t mix, in the case in which the effective
action is quadratic in displacements and which defines the elastic modulus tensorλ mvnw

I for this
case. In this case, the stress tensor (in general the derivative of the potential energy with respect to
smv
I ) is given by

σmv
I = λ mvnw

I snw
I . (3.7)

The diagonal components ofσ are proportional to the compression exerted on the system and
are therefore related to the bulk modulus of the crystalline color superconducting quark matter.
Since unpaired quark matter has a pressure∼ µ4, it gives a contribution to the bulk modulus that
completely overwhelms the contribution from the condensation into a crystalline phase, which is
of orderµ2∆2. We shall therefore not calculate the bulk modulus. On the other hand, the response
to shear stress arises only because of the presence of the crystalline condensate. The shear modulus
is defined as follows. Imagine exerting a static external stressσI having only an off-diagonal
component, meaningσmv

I 6= 0 for a pair of space directionsm 6= v, and all the other components of
σ are zero. The system will respond with a strainsnw

I . The shear modulus in themvplane is then

νmv
I ≡ σmv

I

2smv
I

=
1
2

λ mvmv
I , (3.8)

where the indicesm andv are not summed. For a general quadratic potential withσmv
I given by

(3.7), νmv
I simplifies partially but the full simplification given by the last equality in (3.8) only arises

for special cases in which the only nonzero entries inλ mvnwwith m 6= v are theλ mvmventries, as is
the case for all the crystal structures that we consider.

For a given crystal structure, upon evaluating the sums in (3.2) and then using the definition
(3.5) to compare (3.2) to (3.6), we can extract expressions for theλ tensor and thence for the shear
moduli. This analysis, described in detail in [18], shows that in the CubeX phase

ν2 =
16
9

κ




0 0 1
0 0 0
1 0 0


 , ν3 =

16
9

κ




0 0 0
0 0 1
0 1 0


 , (3.9)
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while in the 2Cube45z phase

ν2 =
16
9

κ




0 1 1
1 0 1
1 1 0


 , ν3 =

16
9

κ




0 0 1
0 0 1
1 1 0


 . (3.10)

We shall see in the next Section that it is relevant for glitch phenomenology to check that both these
crystals have enough nonzero entries in their shear moduliνI that if there are rotational vortices are
pinned within them, a force seeking to move such a vortex is opposed by the rigidity of the crystal
structure described by one or more of the nonzero entries in theνI . This is demonstrated in [18].

We see that all the nonzero shear moduli of both the CubeX and 2Cube45z crystalline color
superconducting phases turn out to take on the same value,

νCQM =
16
9

κ = 1.18µ2∆2 = 2.47
MeV

fm3

(
∆

10 MeV

)2( µ
400 MeV

)2
, (3.11)

whereµ is expected to lie between350to 500MeV and∆ may be taken to be between5 and25MeV
to obtain numerical estimates.

From (3.11) we first of all see that the shear modulus is in no way suppressed relative to the
scaleµ2∆2 that could have been guessed on dimensional grounds. And, second, we discover that
a quark matter core in a crystalline color superconducting phase is 20 to 1000 times more rigid
than the crust of a conventional neutron star [21]. Finally, one can extract the phonon dispersion
relations from the effective action (3.2). The transverse phonons, whose restoring force is provided
by the shear modulus turn out to have direction-dependent velocities that are typically a substantial
fraction of the speed of light, in the specific instances evaluated in [18] being given by

√
1/3 and√

2/3. This is yet a third way of seeing that this superfluid phase of matter is rigid indeed.

4. Rigid quark matter

The existence of a rigid crystalline color superconducting core within neutron stars may have a
variety of observable consequences. For example, if some agency (e.g.magnetic fields not aligned
with the rotation axis) could maintain the rigid core in a shape that has a nonzero quadrupole
moment, gravity waves would be emitted. The LIGO non-detection of such gravity waves from
nearby neutron stars already limits the possibility that they have rigid cores that are deformed to
the maximum extent allowed by the shear modulus (3.11) [22, 23, 24]. Perhaps the most exciting
implication of a rigid core, however, is the possibility that (some) pulsar “glitches” could originate
deep within a neutron star, in its quark matter core.

A spinning neutron star observed as a pulsar gradually spins down as it loses rotational energy
to electromagnetic radiation. But, every once in a while the angular velocity at the crust of the star
is observed to increase suddenly in a dramatic event called a glitch. The standard explanation [25]
(see [18] for more Refs.) requires the presence of a superfluid in some region of the star which also
features a rigid structure that can pin the vortices in the rotating superfluid and that does not easily
deform when the vortices pinned to it are under tension.

As a spinning pulsar slowly loses angular momentum over years, since the angular momentum
of any superfluid component of the star is proportional to the density of vortices, the vortices “want”

7
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to move apart. However, if the vortices are pinned to a rigid structure, these vortices do not move
and after a time this superfluid component of the star is spinning faster than the rest of the star.
When the “tension” built up in the array of pinned vortices reaches a critical value, there is a
sudden “avalanche” in which vortices unpin, move outwards reducing the angular momentum of
the superfluid,and then re-pin. As this superfluid suddenly loses angular momentum, the rest of
the star, including in particular the surface whose angular velocity is observed, speeds up — a
glitch. In the standard explanation of pulsar glitches, this occurs in the inner crust of a neutron star
where a neutron superfluid coexists with a rigid array of positively charged nuclei that may serve
as vortex pinning sites. In recent work, Link has concluded that this scenario is not viable because
once neutron vortices are moving through the inner crust, as must happen during a glitch, they are
so resistant to bending that they can never re-pin [26]. Link concludes that we do not currently
understand the origin of glitches as a crustal phenomenon.

By virtue of being simultaneously superfluids and rigid solids, the crystalline phases of quark
matter provide all the necessary conditions to be the locus in which (some) pulsar glitches originate.
Their shear moduli (3.11), makes them more than rigid enough for glitches to originate within
them. The crystalline phases are at the same time superfluid, and it is reasonable to expect that the
superfluid vortices will have lower free energy if they are centered along the intersections of the
nodal planes of the underlying crystal structure,i.e. along lines along which the condensate already
vanishes even in the absence of a rotational vortex. A crude estimate of the pinning force on vortices
within crystalline color superconducting quark matter indicates that it is sufficient [18]. So, the
basic requirements for superfluid vortices pinning to a rigid structure are all present. The central
questions that remain to be addressed are the explicit construction of vortices in the crystalline
phase and the calculation of their pinning force, as well as the calculation of the timescale over
which sudden changes in the angular momentum of the core are communicated to the (observed)
surface, presumably either via the common electron fluid or via magnetic stresses.

Much theoretical work remains before the hypothesis that pulsar glitches originate within a
crystalline color superconducting neutron star core is developed fully enough to allow it to con-
front data on the magnitudes, relaxation timescales, and repeat rates that characterize the data.
Nevertheless, this hypothesis offers one immediate advantage over the conventional scenario that
relied on vortex pinning in the neutron star crust. Link has observed that it is impossible for a neu-
tron star anywhere within which rotational vortices are pinned to precess [27], and yet there is now
evidence that several pulsars are precessing [28]. Sinceall neutron stars have crusts, the precession
of any pulsar is inconsistent with the pinning of vortices within the crust, a requirement in the stan-
dard explanation of glitches. On the other hand, perhaps not all neutron stars have crystalline quark
matter cores — for example, perhaps the lightest neutron stars have nuclear matter cores. Then, if
vortices are never pinned in the crust but are pinned within a crystalline quark matter core, those
neutron stars that do have a crystalline quark matter core can glitch but cannot precess while those
that don’t can precess but cannot glitch.
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