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1. Introduction

Systems of ultracold Fermi atoms provide a test bed for atomic and nuclear many-body theory.
These systems, like the low-density neutron matter found in the crusts of neutron stars, are very
strongly paired, with gaps of the order of the Fermi energy, rather than the very small fraction typ-
ical in traditional superfluids or superconductors. Strongly paired fermions are important in many
contexts: cold Fermi atom experiments, low-density neutron matter, and QCD at the very high
baryon densities potentially found in the center of massive neutron stars. Developing a quantita-
tive understanding of strongly paired Fermi systems is important since they offer a unique regime
for quantum many-body physics, relevant in very different physicalsettings, including the struc-
ture and cooling of neutron stars. Constraining neutron matter properties can also be important
in understanding the exterior of neutron-rich nuclei by constraining parameters of nuclear density
functionals. Cold-atom experiments can provide direct tests of the equationof state and the pairing
gap in the strongly paired regime, and hence provide a crucial benchmarkof many-body theories
in these systems.

2. Equation of state and pairing gap

For both cold atoms and neutron matter, we consider a system of two fermionic species and a
simple Hamiltonian (for a refinement, see the last section) of the form

H = −
h̄2

2m∑
i

∇2
i + ∑

i< j

v(r i j ), (2.1)

where i and j represent spin up and down particles, respectively. In ultracold Fermigases, the
interactionv(r) can be tuned through Feshbach resonances to be very attractive, andto produce a
specific scattering length. In this work we are interested in values of the Fermi momentumkF times
the scattering lengtha from -1 to -10 (the BCS side of what is known as the “BCS-BEC crossover”)
and also−kFa = ∞, a universal regime known as unitarity. For these systems, the effectiverange
re between the atoms is nearly zero.

On the other hand, in low-density neutron matter the scattering length is very large (“unnat-
urally large”),≈ −18.5 fm, much larger than the typical separation between neutron pairs. The
effective range is much smaller than the scattering length,re≈ 2.7 fm, so|re/a| ≈ 0.15, but only at
very low densities is the effective range much smaller than the interparticle spacing. We are using
the1S0 channel of the Argonne v18 potential.[1]

We have performed[2] fixed-node quantum Monte Carlo (QMC) calculations for both cold
atoms and neutron matter. In each case, the trial wave function is taken to be of the Jastrow-BCS
form with fixed particle number and periodic boundary conditions:

ΨT =

[

∏
i< j

f (r i j )

]

A [∏φ(r i j )]. (2.2)

The BCS pairing functionφ(r) is parametrized with a short- and long-range part as in Ref. [3].
The fixed-node approximation ensures that the result that follows from such a calculation will be
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Figure 1: Equations of state atT = 0 for cold
atoms and neutron matter. Also shown are the
low-density analytical expansion of the ground-
state energy of a normal fluid, and the cold atom
result at unitarity (kFa= ∞, arrow). QMC calcu-
lations are shown as circles and squares for neu-
tron matter and cold atoms, respectively.
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Figure 2: Superfluid pairing gap versuskFa for
cold atoms (re ≈ 0) and neutron matter (|re/a| ≈
0.15). Shown are the mean-field BCS results for
both cases (solid lines) and the QMC calcula-
tions (points), as well as the cold atom result at
unitarity (kFa = ∞, arrow).

an upper bound to the true ground state energy. We have used this fact tovariationally optimize the
parameters inΨT so as to obtain the lowest possible fixed-node ground-state energy.

In Fig. 1 we compare theT = 0 equations of state for cold atoms and neutron matter. The
horizontal axis iskFa, with the equivalent Fermi momentumkF for neutron matter shown along
the top. The vertical axis is the ratio of the ground-state energy to the free Fermi gas energy
(EFG = 3/5EF) at the same density; only at very low densities (where we are near the limit of a
non-interacting gas) is this ratio one. The curve at lower densities shows the analytical result for
normal matter:E/EFG = 1+ 10

9π akF + 4
21π2 (11−2ln2)(akF)2, which is only accurate for very low

densities.

The equations of state for cold atoms and neutron matter are practically identical at low den-
sities, and are very similar even at densities where the effective range is comparable to the in-
terparticle spacing. This shows why cold atomic systems are a “test bed” fornuclear physics: a
measurement of the ground-state energy of, say, a6Li gas provides results that are directly related
to the equation of state of neutron matter. The largest density at which we performed a calculation
for neutron matter (since beyond that point non S-wave contributions become considerable; again,
see the last section) is atkFa=−10. The energy at that point is not too far from QMC calculations
[3, 4, 5] and measurements (see Ref. [6]) of the ratioξ of the unitary gas energy toEFG; previous
calculations giveξ = 0.42(1). Extrapolations of recent QMC calculations tore = 0 and also AFMC
calculations suggest thatξ = 0.40(1) (arrow in Fig. 1).

The pairing gap is the other fundamental zero-temperature property of superfluid systems.
Calculations of the pairing gap in many-body simulations are significantly more difficult than the
ground-state energy, essentially because the pairing gap is much more susceptible to finite-size
truncation errors than the ground- state energy. To examine these more concretely, we have com-
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pared calculations of the BCS pairing gap in finite volumes with periodic boundary conditions to
the infinite volume limit. Details of this process of reaching the thermodynamic limit are given in
Ref. [2]. The main result is that at leastO(60) particles are needed for such a simulation to be
reliable.

Calculations of the s-wave pairing gap in neutron matter have varied enormously over the past
20 years [7, 8]. The difficulties in accurately calculating corrections to theBCS pairing gaps in the
strongly paired regime are significant, and hence calculations of the pairinggap can differ by large
factors (from 4 to 10) in the low-density regime. Cold atom experiments can provide a critical test
of theories of the pairing gap in this regime.

We calculate the pairing gap from the odd-even energy staggering:

∆ = E(N+1)−
1
2
(E(N)+E(N+2)) (2.3)

whereN is an even number of particles. In Fig. 2 we plot the pairing gap as a functionof kFa for
both cold atoms and neutron matter.

For very weak coupling,−kFa << 1, the pairing gap is expected to be reduced from the BCS
value by the polarization corrections calculated by Gorkov [9]∆/∆BCS= (1/4e)1/3. Because of
finite-size effects, it is difficult to calculate pairing gaps using QMC in the weak coupling regime.
The QMC calculations at the lowest density,kFa = −1, are roughly consistent with this reduction
from the BCS value. At slightly larger yet still small densities, where−kFa = O(1) butkF re << 1
for neutron matter, one would expect the pairing gap to be similar for cold atomsand neutron matter.
The results atkFa = −2.5, wherekF re ≈ 0.35, support this expectation. Beyond that density the
effective range becomes important and the QMC results are significantly reduced in relation to
the cold atoms wherere ≈ 0. Such a microscopic calculation of the neutron matter1S0 pairing
gap is potentially important to neutron star cooling and to Skyrme-Hartree-Fock-Bogoliubov mass
formulas.[10].
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Figure 3: Experimental points and theoretical curves for the spin-upand spin-down densities as a function
of distance from the center of the trap.
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Moving on to the experimental situation, measurements of the local polarization inthe trap
provide direct information on the pairing gap. In such experiments the spin-averaged local chemical
potential is fixed by the trap potential and the total number of particles. The difference between
the up and down chemical potentials is independent of the position in the trap. At zero temperature
in a slowly-varying potential the system will separate into three regions: a superfluid region in
the center which has been found to have zero net polarization, a normal polarized region in the
middle with different numbers of spin up and spin down particles, and a fully polarized region in
the exterior consisting of only one species. The fact that the interior region is unpolarized can be
used to place a lower bound on the pairing gap (see Fig. 3). At finite temperature the interior
superfluid will be polarized by thermal effects, and measurements of the polarization as a function
of position in the trap provide a sensitive estimate of the pairing gap. We have analyzed recent
measurements by the MIT group[11] and obtained an estimate for the pairing gap that is 0.45(5)EF

in the unitary regime.[12] This can be compared with the many-body calculation shown in Fig. 2
which is 0.50(3)EF and also with the recent experimental result [13] which is 0.44(3)EF .

3. Ongoing work

Apart from the equation of state, it is possible to calculate other quantities using QMC, like
the momentum distribution, the pair distribution function, and the quasiparticle dispersion. Fur-
thermore, it is possible to use a potential that is more refined than the one usedin Ref. [2], by
incorporating more terms from the AV18 potential, i.e.

v4(r) = vc(r)+vσ (r)σ1 ·σ2 (3.1)

The quasi-particle spectrum that results from such an approach is shown in Fig. 4; it is calculated
by putting the unpaired particle in different momentum states and using Eq. (2.3). A knowledge
of this quantity is relevant to calculations of the spin susceptibility of neutron matter, which are
of interest in neutron star physics. Further details and results for these quantities with this new
potential are to be provided in a forthcoming publication.[14].
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Figure 4: Neutron matter quasi-particle dispersion in BCS (line) andGFMC (points) atkFa = −10.

5



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
4
5

Strongly Coupled Fermions in Nature and the Laboratory J. Carlson

Another direction such calculations have taken is related to the physics of cold atoms: it is
possible[15, 16] to trap Fermi-Fermi mixtures (e.g. of6Li and 40K) in the laboratory and also
to tune the relative populations of the two species. There is noa priori reason to expect such
an unequal-mass system to behave in exactly the same way as the corresponding equal-mass one
(though in mean-field theory that is the case), i.e. the possibility of exotic stateshas to be consid-
ered. In a forthcoming publication[17] we give results for the quasiparticle spectrum as well as the
energy as a function of polarization for such a system.
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