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1. Introduction

The study of the properties of neutron stars (NS) concerns the large density (and low tempera-
ture) region of the phase diagram and, in particular, it requires the QCD non-pertubative Equation
of State (EoS) at small T and large µq, where no QCD lattice simulations are available yet. Due to
the lack of lattice data, analytic approaches based on more elementary models, such as the Nambu–
Jona-Lasinio (NJL) model [1], the MIT Bag model, and the Color Dielectric model [2] are mostly
used. A serious drawback of those models is that they cannot make predictions for both limits, i.e.
high temperature and zero chemical potential or high chemical potential and low temperature, and
therefore cannot be fully tested. One of the few exceptions is the Field Correlator Method (FCM)
[3], which in principle is able to cover the full temperature-chemical potential plane. The method
contains ab initio the property of confinement, which should play a role in the stability of the pure
quark phase in neutron stars, as we discussed in ref.[4]. Based on that, we have tested [5] the FCM
by comparing the results for the neutron star masses with the existing phenomenology, which turns
out to be a strong constraint on the parameters used in the model. In particular, we have found
definite numerical indications on some relevant physical quantities, such as the gluon condensate
and the QQ̄ potential, to be compared to the ones extracted from the determination of the critical
temperature of the deconfinement phase transition. This shows the relevance of the comparison of
the model predictions in the high chemical potential region with the astrophysical phenomenology.

2. Hadronic and quark EOS

The main point of our study is the comparison of the nuclear matter EoS with the one for quark
matter. We start with the description of the hadronic phase. The EoS is based on the Brueckner–
Bethe–Goldstone (BBG) many-body theory, which is a linked cluster expansion of the energy
per nucleon of nuclear matter [6]. It has been shown that the non-relativistic BBG expansion is
well convergent, and the Brueckner-Hartree-Fock (BHF) level of approximation is accurate in the
density range relevant for neutron stars. In the BHF approximation the energy per nucleon is

E
A

=
3
5

k2
F

2m
+

1
2n

Re ∑
k,k′≤kF

〈kk′|G[n;e(k)+ e(k′)]|kk′〉a. (2.1)

where G is the Brueckner reaction matrix, which contains the bare nucleon-nucleon (NN) interac-
tion, and the nucleon number density n. e(k) is the single-particle energy, and the subscript “a”
indicates antisymmetrization of the matrix element. In the calculations reported here we have used
the Argonne v18 potential as the two-nucleon interaction, supplemented by three-body forces built
according to the Urbana model [7]. The corresponding nuclear matter EOS reproduces correctly
the nuclear matter saturation point ρ0 = 0.17 fm−3, E/A =−16 MeV [8]. In neutron stars one has
to consider matter in beta equilibrium, where electrons and eventually muons coexist with baryons,
while neutrinos are considered to escape from the star. The EOS for the beta equilibrated matter
can be obtained once the hadron matter is known, together with the chemical potentials of different
species as a function of total baryon density. Since the procedure is standard, we do not give further
details of the calculations.
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Let us now illustrate the EoS for quark matter. A systematic method to treat non perturbative
effects in QCD is by gauge invariant field correlators [3]. The approach based on the FCM provides
a natural treatment of the dynamics of confinement (and of the deconfinement transition) in terms
of the color electric and color magnetic Gaussian correlators. At µq = 0, the analytical results are
in reasonable agreement with lattice data [9, 10, 11]. The extension in ref. [10] of the FCM to finite
values of the chemical potential, allows to obtain a simple expression of the Equation of State of
the quark-gluon matter, which reads

Pqg = Pg + ∑
j=u,d,s

P j
q +∆εvac (2.2)

where Pg and P j
q are respectively the gluon and quark pressure, and

∆εvac ≈−
(11− 2

3 N f )
32

G2

2
(2.3)

corresponds to the difference of the vacuum energy density in the two phases, being N f the flavour
number, and G2 the gluon condensate, whose numerical value is known with large uncertainty,
G2 = 0.012±0.006 GeV4 [12]. Within the FCM, the quark pressure, for a single flavour, is given
by [11, 13, 14]

Pq/T 4 =
1

π2 [φν(
µq−V1/2

T
)+φν(−µq +V1/2

T
)] (2.4)

φν(a) =
∫ ∞

0
du

u4
√

u2 +ν2

1
(exp [

√
u2 +ν2−a]+1)

(2.5)

where ν = mq/T , and V1 is the large distance static QQ̄ potential. The gluon contribution to the
pressure is

Pg/T 4 =
8

3π2

∫ ∞

0
dχχ3 1

exp(χ + 9V1
8T )−1

(2.6)

The potential V1 is assumed to be independent on the chemical potential, and this is partially sup-
ported by lattice simulations at small chemical potential [11].

The comparison between the pressures in the hadron and quark phases is shown in Fig. 1 (left
panels). We adopt the simple Maxwell construction, which implies that the phase coexistence is
determined by a crossing point in the pressure vs. chemical potential plot. In the upper panel we
show the results obtained using V1 = 0, whereas in the lower panel calculations with V1 = 0.01
GeV are displayed. The solid line represents the calculations performed with the BBG method
with nucleons, and the other lines represent results obtained with different choices of the gluon
condensate G2. The chosen values of G2 give values of the critical temperature in a range between
160 and 190 MeV [11]. We observe i) the crossing point is significantly affected by the value of
the gluon condensate, and only slightly by the chosen value of the potential V1, ii) with increasing
G2, the onset of the phase transition is shifted to larger chemical potentials. In Fig. 1 (right panels)
we display the pressure vs. nucleon density relationship, for the several cases shown in the corre-
sponding left panels. Below the plateau, β -stable and charge neutral stellar matter is in the purely
hadronic phase, whereas for density above the ones characterizing the plateau, the system is in the
pure quark phase.
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Figure 1: The pressure vs. baryon chemical potential (density normalized with respect to the saturation
value) is displayed in left (right) plots for V1 = 0 (upper panels), and V1 = 0.01 (lower panels).
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Figure 2: The gravitational mass (in units of the solar mass) is displayed as a function of the central baryon
density, normalized with respect to the nuclear matter saturation density ρ0 (left panel), and the correspond-
ing radius (right panel).

The EoS is the fundamental input for solving the hydrostatic equilibrium equations of Tolman,
Oppenheimer, and Volkov [15]. In Fig.2 (left panel) we display the gravitational mass (in units of
solar mass M¯ = 2× 1033g) as a function of the central baryon density (normalized with respect
to the saturation value), and the corresponding radius (right panel). We observe that the value of
the maximum mass spans over a range between 1.4 and 1.8 solar masses, depending on the value
of the gluon condensate G2. The stability of the pure quark phase appears only for small values of
G2, but the corresponding values of the gravitational maximum mass are hardly in agreement with
observational data. In fact, we recall that any “good” equation of state must give for the maximum
mass at least 1.44 solar mass, the best measured value so far [16]. By increasing the value of G2,
the maximum mass increases up to about 1.8 solar mass, but the stability of the pure quark phase
is lost, and the maximum mass contains in its interior at most a mixed quark-hadron phase. We
observe a similar trend even if V1 > 0 [5]. However, the observational data indicate that NS with
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a mass of at least 1.6 solar masses do exist [17], and this puts a serious constraint on the value of
the gluon condensate, which is not easy to reconcile with the value 0.006 GeV4, extracted from
the comparison with the lattice data on the critical temperature. As far as the value of the large
distance static QQ̄ potential V1 is concerned, in the comparison with lattice calculations [10] one
finds a value V1 ∼ 0.5 GeV at the critical temperature and for µ = 0. We have therefore changed
the strength of V1 from small values up to 0.5 GeV, and found that already for V1 = 100 MeV
the phase transition cannot occur in NS, which is then composed of baryon matter only, with a
maximum mass around 2 solar masses. For higher values of V1 the transition can possibly occur
only at exceedingly high values of the density, and therefore the quark phase is irrelevant for NS
physics.

These results indicate a direct link between the NS quark content and the properties of decon-
finement in the hadron-quark phase transition. More quantitatively, if one considers that the well
established values of NS masses never exceed ≈ 1.6 solar masses, then these observational data
constrain V1 to small values and in a narrow range, well below 100 MeV, in sharp contrast with
values around 0.5 GeV extracted from lattice calculations. Despite the FCM is in good agreement
with full QCD lattice data and is a well defined theoretical approach where confinement is, ab ini-
tio, the crucial dynamical aspect, some refinements seem to be needed once the astrophysical data
are considered.
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