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ABSTRACT 
 

The Restricted Quantum Chromodynamics (RCD) formulated in terms of connections on global 

spaces has been supersymmetrized, in a general manner, taking only the topological part into 

considerations. Dyonic supermultiplets have been obtained for the N=1 supersymmetry, quantum 

mechanically as well as in the supersymmetric version of Georgi-Glashow  model for vanishing 

linear momentum and in the Clifford vacuum. Incorporating the Dyonic color charge and color spin 

induced as a result of fermion fractionization in Georgi- Glashow model(in presence of an isovector 

fermion field)into the Supersymmetric Restricted Quantum Chromodynamics in N=1 SUSY limit 

,the Lagrangian density  has been constructed and SUSY Dyonic solutions have been obtained . 

Furthermore, the classical mass of the Dyon has been calculated by minimizing the background 

potential of theory. The eigen value equations of bosonic and fermionic fluctuations have been 

obtained in the dyonic background gauge and the corresponding one-loop corrections to the Dyonic 

mass are calculated and it has been shown that one-loop quantum corrections lead no change in 

classical mass  of Dyon. 
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1.Introduction 

The non-trivial topological structure and corresponding classical solutions of non-Abelian gauge 

theories, enforces us to speculate the existence of built-in-duality, which may play an important 

role in understanding some non-perturbative aspects of QCD e.g. chiral symmetry breaking and 

quark confinements etc. It is conjectured that the non-Abelian gauge theories may express an 

exact electro-magnetic duality that exchanges solitons with elementary quanta and weak coupling 

with strong coupling. QCD has been formulated as a dual gauge theory called Restricted quantum 

chromodynamics (RCD) which exhibits built-in-dual structure and its dual dynamics  guarantees 

the confinement of colored fluxes associated with dyonic quarks through the mechanism of 

generalized Meissner effect. Constructing the Lagrangian density in the N=1 supersymmetric 

RCD(topological part only) in terms of the isotriplet gauge field and its fermionic superpartner, 

supersymmetric dyonic solutions are obtained and the classical mass of the dyon is calculated by 

minimizing the background potential of the theory.  

1.1Restricted quantum chromodynamics (RCD) – A brief review: 

The mathematical foundation of RCD lies in the observation that the non-Abelian gauge 
symmetry does allow an extra internal symmetry, called magnetic symmetry, imposed by 
insisting on the following gauge covariant condition; 

                          ˆ ˆ ˆ* 0D m m q V mµ µ µ=∂ + × =                                                                          (1)                                 

Where, m̂  is an arbitrary multiplet and constitute an adjoint representation of group G whose 
little group is assumed to be Cartan’s subgroup at each space-time point. Normalising m̂ (i.e. 
m̂ 2 =1) and choosing G=SU(2), the gauge covariant condition in eq. (1) gives the following 
form of generalized restricted gauge potential; 

                                  
1ˆ ˆ ˆV iV m m m
qµ µ µ

∗
∗= − − ×∂                                                                      (2) 

Such that ˆ .mV Vµ µ
∗= −  is the unrestricted Abelian component while the remaining part of Vµ  is 

completely determined by magnetic symmetric requirement. The generalized restricted gauge 
field strength corresponding to Vµ  can be constructed in the following form; 

                                                [ ]G q V Vµν µν µ νς ∗= + ×  ˆ( )iF H mµν µν= − +                         (5)                           

Identification of Fµν  and Hµν as generalized electric and magnetic field strengths,obviously 
manifest striking duality between electric and magnetic fields which can be made more explicit 
in magnetic gauge by imposing a gauge transformation U, such that: 
                                                m̂    Uur    3̂ξ    =    (0,0,1)T .                                                       (6) 
   The gauge invariant SU (2), RCD lagrangian may be written in the following form;   

                                
1
4Rl G G i D mαµν α µ α

αµν µ α αψ γ ψ ψ ψ= − + −                                             (7) 
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Describing the dyonic source by a complex field operator φ , RCD lagrangian (eq. (7)) is 
modified to  :                                R R CL l l= +                                                                                                                                           (8) 

Where, lC is obtained  as     
2

4( ) ( )Cl i V V
qµ µ
π φ φ∗′= ∂ + −                                                     (9) 

( )V φ φ∗ is the effective potential. we obtain the following phenomenological Lagrangian, in the 
magnetic gauge, just as Ginzburg-Landau Lagrangian of superconductivity: 

1 1 ( )
4 4 2R

iL F F H H H F F Hµν µν µν µν
µν µν µν µν

∗ ∗= − − − −  

     
( ) ( ) ( )

2 2
q qi iV W i iV W mµ µ

µ µ µ µ µ µϕ γ ϕ ϕ γ ϕ ϕ ϕ ϕ ϕ
∗ ∗

∗ ∗
+ + − − + + − −

   
+ ∂ + − + + ∂ − − + + +   

        

      
2

4 ( ) ( )i iV W V
qµ µ µ
π φ φ φ∗ ∗  + ∂ + − + − 

  
                                                                 (10)                               

1.1.1Supersymmetric Dyons and Restricted Gauge Theory: 

Dyons appear in RCD only through restricted part of generalized potential,so the gauge 
potential and field strength now may be written in the following modified form: 

1 ˆ ˆV m m
qµ µ= − ×∂ ,      and      

1 (2 )a abc a bcd
b c b c dG m m m m m m

qµν µ ν µ νε ε= ∂ ∂ + ∂ ∂             (11)    

The supersymmetric  RCD obtained by modifying the Lagrangian density into the form: 

5
1 1 1 1 ( )
4 2 2 2

a a a a b c
a a a abcL G G D D m D m q m V mmµν µ µ

µν µ µλ γ λ ε λ γ λ ∗= − + + + − ,            (12) 

where aλ  constitutes the isotriplet of fermionic field, µγ are Dirac matrices, 5 1 2 3 4γ γ γ γ γ= ,                      

The background potential ( )V mm∗  has been constructed in the form 

                                
2 2( ) [( ) ( )( )]a a b

a a bV mm q m m m m m m∗ ∗ ∗ ∗= −                                         (13) 
SUSY Lagrangian of  topological part of RCD is then given in the following  form, 

       

2

2

5

1 1[ ( )
2

1 1 ]
2 2
1 [ ( )]
2
1 [ ( )]
2
1 ( ),
2

bc cb bcd a jk
bc ajk b cd

abc j kl bcd j kl
jkl a bc jkl b cd

a b b
a a b b a

a a b b a
b b

a b c
abc

L m m
q

m m m m

m m m m

m m m m m m m

q m V mm

µν µν µν
µν µν

µν µν
µν µν

µ
µ µ µ

µ µ µ

ε ε

ε ε ε ε

λ γ λ λ λ

ε λ γ λ ∗

= − Γ Γ −Γ + Γ Γ

+ Γ Γ + Γ Γ

+ ∂ + ∂ − ∂

+ ∂ + ∂ − ∂

+ −

                                         (14) 

In order to check the supersymmetric invariance of this Lagrangian, we apply the following 
supersymmetric transformations:  
                    5 ,a amδ αγ λ=      
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                    5 5
1 ( ),a abc

b c b cV m m
qµ µ µδ ε α γ λ γ λ= − ∂ + ∂                                                      (15)       

                     
1 (2 )a abc a bcd

bc b cdm m
q

µν
µν µνδλ ασ ε ε= Γ + Γ 5 .a b

bi m m mµµαγ γ γ−          

Under these transformations,     0Lδ =                                                                                   (17) 
Provided we assume the supersymmetric conditions, 
                5 ˆ ˆ( ) ,m m i qµ µ µλ λ λ γ λ×∂ + ×∂ = −    [ , ] 0,bm α =   5[ , ] 0bm γ =                        (18)        
which give the generalization of the Majorana condition and the Weyl condition.   
From the Lagrangian density we get the following form of energy-momentum density tensor, 

           
1 1 1[
2 4 2

a a a ij a i
a a ij a i aT D m D m G G g G G Dµν µ ν µλ ν µν

λ λ γ λ= + − − +  

                     5
1 1 ( )].
2 2

a i a b c
i a abcD m D m q m V mmε λ γ λ ∗+ + −                                             (19) 

Setting  0µ ν= =  in this relation, integrating T ∞ over three-space, the classical mass of the 

dyon comes out to be     
2 classicalM q Mν

= =                                                                     (20) 

In the dyonic background fields    ,a a a
DV V Vµ µ µδ= −    ,a a a

Dm m mδ= −                               (21) 
the bosonic part of the Lagrangian density (14) may be written as 

2 221 1 1( ) ( )( ) ( )
2 2 4

a
B D b cL L D V D V D V q V Vν µ

ν µ µ ν µ νδ δ δ δ δ∗= − + −  

         
1 1 1Re[ ] ( )( ) ( )
2 2 2

a b c a a b c
abc D a abcq G V V D m D m q D m V mµ ν µ µ

µν µ µε δ δ δ ε∗ ∗ ∗ ∗− − −  

          
1 1( ) ( )
2 2

a b c abc
abc a b cq D m V m q D m V mµ µ

µ µε δ δ δ ε δ∗ ∗+ + 21 [
2 b cq V mµδ+  

           
2 2 2 21 [( ) ( ) ( ) ],

2
a

b b aq V m V mµ µδ δ+ −                                                                            (22) 

where  DL   is the dyonic background Lagrangian given by 

 
1 1 ( )( ) ( )
4 2

a a a
D D aD D Da D DaL G G D m D m V m mµν µ

µν µ
∗ ∗= − + −                                                       (23) 

To this Lagrangian we add: (i) Gauge-fixing term:   the gauge-fixing term is given by 
1
2

a
gf aL f f= − 22 21 ( ) ( ) ( ) .

2
abc a a b

a b c b b aD V q D V m m q m m m m mµ µ
µ µδ ε δ δ δ δ δ= − + + −  

(ii) Faddeev-Popov ghost term: This term is given by ( ) ,a b
FP a bL c f cδ δθ∗= −                               

2 21 [ ( )] ( )a b a a b ab
FP a b bL c D m m m m q m m m c

q
µ

µ µ δ∗  
= ∂ + ∂ + − 

 
                                   

The total Lagrangian for Bosonic part be then written as:     .B gf FPL L L L= + +                (24) 

One-loop contributions to dyonic mass:   
0

1 ,
2Bose B B B GM M ω ω ω∆ = ∆ = ∑ + ∑ −∑        (25) 

i.e may be written as ,     
1
2Bose BM ω= ∑                                  
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Similarly fermionic fluctuation to dyonic mass: 
1 .
2F Fermi FM M ω∆ = = − ∑             

 Total one-loop quantum correction to dyon mass [ ]1 .
2B F B FM M M ω ω∆ = ∆ + ∆ = ∑ −∑ (26) 

Dyonic mass up to one-loop quantum correction [ ]1 ,
2classical B FM M ω ω= + ∑ −∑          (27) 

But, .F Bω ω∑ = ∑ hence in the supersymmetric limit, the non-Abelian theory of dyons in RCD 
falls apart, in the correct way, into degenerate supermultiplets. 
1.1.1.Results and Discussions 
       The Lagrangian density is supersymmetric for the generalized Majorana and Weyl 
conditions leading to supersymmetric dyonic solutions with classical mass as predicted by Julia 
and Zee. In the dyonic background field  the bosonic part of the supersymmetric Lagrangian 
gives bosonic fluctuations and fermionic part in turn yields the fermionic fluctuation leading to 
one-loop corrections to dyonic mass which shows no change in classical limit. This SUSY 
dyonic model and the vanishing of the quantum corrections may be used for proving Montonen 
and Olive conjecture. All these results of the supersymmetrized RCD agree with conclusions 
drawn by D’Adda et al using dimensionally reduced supersymmetrized pure Yang-Mills theory 
in six dimensions. 
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