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1. Introduction

One of the major challenges of contemporary theoretical physics is ththdean compelling
guantum theory of gravity. Despite the great efforts made until now, thrpkaie description of
such a theory seems to be far from completion. However, there existeetywafrapproaches that
could be enlightening for understanding certain aspects of what might ullyni@ehe correct
quantum theory of gravity[J1H 4].

Certainly, one of the most interesting points of view one can adopt arm@stfre observation
that the failure of perturbative approaches in gravity does not imply thet a quantum theory
cannot exist. In principle there is the possibility of quantizing gravity norupleatively, with
the aid of Exact Renormalization Group techniques, say. In fact withindrealed asymptotic
safety program(]5]{[30], a lot of efforts were devoted to establiskiiregexistence of an ultraviolet
fixed point at which Quantum Einstein Gravity (QEG) can be renormalizedail®d calculations
revealed that the renormalization group (RG) flow of the theory doesdiessess an appropriate
non-Gaussian fixed point (NGFP) in all approximations which were in\egsiiy

Formulating QEG in terms of the gravitational average action as proposg{l, ith¢6RG
flow in question is that of the effective average actiafig,y,-- -], henceforth abbreviated EAA
[BI].[B4]. While similar in spirit to the idea of a Wilson-Kadanoff renormalizati replaces the
iterated coarse graining procedure by a direct mode cutoff at theendf(#R) scale&k. More im-
portantly, the EAA is a scale dependent version of the ordiredfgctiveaction, while a “genuine”
Wilsonian actionS,Q’ is abare action, i.e. it is to be used under a regularized path integral. As
a result, it depends on the ultraviolet (UV) cutdff its dependence oA is governed by a RG
equation which is different from that fdr,. In fact the scale dependencelafis governed by a
functional RG equation (FRGE) which is one of the most useful items in the Eéd\ box".

As a quantization method, the FRGE is in principle sufficient to fully define atgua field
theory: given a complete RG trajectory, well defined for all valuds ®f0, «), we have complete
knowledge of all properties of the QFT at hand. Its Green'’s functioastee derivatives of x and
atk = 0 they coincide with those of the standard effective acfieaI',—o [B1]. The RG trajectory
chosen must be free from divergences in both the IR and the UV limit.To ecthlezasymptotic
safe property, the trajectory should be arranged to hit the NGFP in the UV limit.

However, one should stress the difference between the EAA and thenidlitsapproach. In
a senseS) for different values of\ is a set of actions for the same system: the Green'’s functions
have to be computed frorﬁ,’\" by a further functional integration over the low momentum modes,
and this integration renders them independemft.dBy contrast, the EAA can be thought of as the
standard effective action for a family of different systems: for anyevalik it equals the standard
effective action of a model with the bare acti§n+ AcSwhereAcSis the mode suppression term.
The corresponding-point functions, computed as functional derivative§ pivithout any further
integration, are scale dependent and they provide an effective fiedyttlescription [37]{[49] of
the physics at scale

Because of these differences between the ERAand a genuine Wilson actid,, this way
of constructing an asymptotically safe field theory does not by itself yield@agzed path integral
over metricsy,y whose continuum limit would be related to the RG trajectiry,0 < k < c} in
a straightforward way.
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In general the relationship betweé&p and Sy will depend on how we regularize the path
integral measur& y,y when defining the generating functional. In the following we shall demon-
strate that it is possible to reconstruct a regularized functional integghlthat it describes a fixed,
prescribed asymptotically safe theory in the infinite cutoff lilit— co. Adopting a particularly
convenient UV regularization scheme we shall see that the informationicedtal" is sufficient
in order to determine the related bare act8arin the limit A — «. Given a complete RG trajectory
{l'k,0 <k < 0}, computed from a FRGRithout any UV regulatgrwe deduce from it how the
bare coupling constants contained3nmust behave in the UV limit when the path integral (with
the measureZpy and actionS, defined according to the special scheme adopted) is required to
reproduce the prescribédg trajectory.

There are various motivations for trying to construct a path integraésgmtation of asymp-
totically safe QEG:

(a) Working with the EAA alone we have no access to the microscopic (or “clSsys-
tem whose standard quantization gives rise to this particular effectivanaétifunctional integral
representation of the asymptotically safe theory will allow the reconstrucfitimeomicroscopic
degrees of freedom that we implicitly integrated out in solving the FRGE, dsawéheir funda-
mental interactions. The path integral provides us with their action, andtfrismaction, by a kind
of generalized Legendre transformation, we can reconstruct their Haraiftalescription. From
this phase space formulation we can read off the classical system winarsiizqtion (also by other
methods, canonically say) leads to the given effective action. We eifisystem to be rather
complicated so that it cannot be guessed easily. This is why we start ditdtive level where we
know what to look for, namely & whose functional derivatives$s{matrix elements) are such that
observable quantities have no divergences on all momentum scales.

(b) Many general properties of a quantum field theory are most easily athipza path
integral setting, the implementation of symmetries, the derivation of Ward identitidxe dncor-
poration of constraints, to mention just a few.

(c) Many approximation schemes (perturbation theory, large-N expans®o)aee more nat-
urally described in a path integral rather than a FRGE language. A sthwdgrof doing pertur-
bation theory is to compute, order by order, the counter terms to be includgdtimmget finite
physical results in the limit\ — . Now, QEG is not renormalizable in perturbation theory and
hence new counter terms with free coefficients must be introduced abedeh If, on the other
hand, QEG is asymptotically safe, defined by a complete traje¢farp < k < «}, this trajectory
“knows" the correct UV completion of the perturbative calculation. Butrideo to extract this
information froml", and make contact with the perturbative languag8etounter terms we must
convert thd -trajectory to aSs-trajectory first.

(d) Ultimately we would like to understand how QEG relates to other approachesium
gravity, such as canonical quantization, loop quantum grafjity |2 — 4] ant® Carlo simulations
[B31-[B4)], in which the bare action often plays a central role. In the tdd®arlo simulation of the
Regge and dynamical triangulations formulation, for instance, the starting ipaa regularized
path integral involving some discrete versionSaf and in order to take the continuum limit one
must fine tune the bare parametersSinin a suitable way. If one is interested in the asymptotic
scaling, for instance, and wants to compare the analytic QEG predictionsw@ayhe continuum
is approached in the simulations, one should converf theajectory to aSa-trajectory first. The
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map fromlk to Sy depends explicitly on how the path integral is discretized; so each alternativ
formulation of QEG has its ow8, for one and the sarmie,.

The remaining sections of this paper are organized as follows. In S¢btiend2scribe some
features of the EAA when it has an additional UV cutoff built into it. Then,@atﬁ;r@, we explain
the reconstruction of the bare from the running effective action. Hiiemrethe method is applied,
in Section[}, to the Einstein-Hilbert truncation of QEG, and in Sedfion 5, toocomEily reduced
gravity in the local potential approximation. A summary and outlook is given gii@e[6. In an
appendix we further elaborate on the relation between the bare andebsvefiaverage action by
means of a simple example which is of physical interest in its own right: the cogioal@aonstant
induced by a scalar matter field.

2. Effective Average Action with UV cutoff

In this section we describe how the functional integral underlying theitefirof the effective
average action can be made well defined. We regularize it by introdugibyautoff A and then
derive, in a completely well defined way, the corresponding EAA and isdiguation in presence
of A. Many different regularization schemes are conceiveable herecdrareteness we use a
kind of “finite mode regularization" which is ideally suited for implementing the Kggound
independence” mandatory in QEG.

For simplicity, we consider a single scalar field on flat space. The geraializio more
complicated theories can be achieved by obvious notational changes.

Let x(x) be a real scalar field on a fldtdimensional Euclidean spacetime. In order to dis-
cretize momentum space we compactify spacetimeddaus. As a result, the eigenfunctions of
the Laplaciard = 6HV9,,0, = —p? are plane waves(x) O exp(ip - X) with discrete momentay,
and eigenvalues p?. Given a UV cutoff scalé\, there are only finitely many eigenfunctions with
Ip| = /P2 < A. We regularize the path integral in the UV by restricting the integration to those
modes. Therefore, the fiejgland the sourc@ have an expansion

XX)= > XpUp(¥), and J(x)= % Jpup(x) (2.1)
[pl€[0A] [pl€[0A]

Now we define a UV-regulated analogue of the standard functiti{d]:

exp(Wiald]) = /%x exp( ~ Snx] ~ Six] +/dde(x)X(x)) 2.2)

The notation in eq[.(2 2) is symbolic. In fact, its RHS involves only finitely many natigns and is
not a genuine functional integral. Here, the measitg stands for an integration over the Fourier
coefficientsyp with p? belowAZ:

/@Ax: M /dxpM*[Xp} 2.3)
pleon -

The arbitrary mass parametérwas introduced in order to give the canonical dimension zero to
(2.3). As always in the EAA constructiop ]3[L,]35], the IR modes with< k are suppressed by a
IR cutoff % (p?) which gives rise to a momentum dependent mass term:

MSIX] = 5 [ XX ()R B)X () X
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In (2.3) the bare actioB, is allowed to depend on the UV cutoff. Ultimately we would like to fix
this A-dependence in such a way that, for every fikiendJ, the path integral has a well defined
limit for A — oo.

Following the standard constructign [31], we define the EAA as

Al = Fnld] = 5 [FX000(5)9() 25)

wherei:k’,\[w] is the Legendre transform &% A[J] with respect tal and @ = { @} pjc(o,n] IS the
expectation value fielgy(x) = (x(x)) obtained by differentiatint\ A [J] with respect to the source
J(X).

It is then straightforward to show that the definitign2.5) implies the followinacexRGE
for Mk a:

1 -1
Kok al] = ETF/\ [(rﬁ,z/)\[‘l’] +9fk) kdk«%k} (2.6)

Here, Ti denotes the trace restricted to the subspace spanned by the eigenfin€ipdrwith
eigenvalues smaller thak?:

Tial-++] = Tr[0(A2 = pA)[---]] 2.7)
It is worth mentioning thal i satisfies the integro-differential equation

Ok al@)
S9(x)

5 [ 10 ) (2.8)

where we have introduced the fluctuation figlk) = x (x) — @(x). Eq.(2.8) is the starting point
for our investigations in the next section.

A natural question that arises immediately is whether the UV cutoff can be exhfovm the
FRGE. Indeed, for this to be possible it is sufficient to assume that thef @utdfosen such that
koZ«(p?) decreases rapidly enough so that the trace of the flow equtipn (2.8) eés in the
limit A — 0. As a result, the\-free” FRGE without UV cutoff, valid for alk > 0, has the familiar
form:

exp(~nl@l) = [7nfexp(—Salo+ 1]+ [ 109

kAol = 5] (F210 + 207 kdad( )] (2.9)

We denote the solutions df (2.9) &E, 0 < k < »}, and those of the FRGE (2.6) with UV cutoff
as{la, 0<Kk< A}

It is easy to show{[37] that the flow equations farandly o are essentially the same as long
ask < A. Generically, wherk approacheg\ from below, there exist some small corrections due
to the UV cutoff which affecf’y o and cause it to differ fron,. However, it is always possible to
chose a special IR cutoffy(p?) such that those corrections vanish. In particular, this happens with
the optimized cutoff [522(p?) = (k? — p?)8(k? — p?). As a result the functiondl 5 satisfies
the same FRGE ds, but is defined in the intervdd < A only. For identical initial conditions, a
simple relation between the solutions of the two flow equations exists therefore:

Mia=Tk when0<k<A (2.10)
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complete trajectory
incomplete trajectory {I'p, 0 <k < o}

{FkA,0§k</\}

Figure 1. Employing the optimized cutoff every complete solution be N\-free FRGE gives rise to a
solution of the FRGE with UV cutoff, valid up to any value &f

HereA is a fixed, but arbitrary finite scale. In other word§, o, 0 < k < A} is the restriction of
the complete solutiodil,, 0 < k < «} to the intervak < A. Thus, sending\ — « in (2.10) is a
trivial step. The situation is illustrated in Fig.1.

3. Reconstructing the bare action

The problem we want to address now is how one can determin®-tiependence of the bare
actionS,, given some complete solution of thefree flow equation{I'y, k € [0,0)}, According
to (2.10), this complete solution implies a solution with a UV cutdffi a, k € [0,A]}. Setting
k= /\ we have in particulal o A = A or, more explicitly,

Mk=AnA = Tk=n (3.1)

Thus, knowing i for all k means that we knowp A for all A.

Next we shall explain how, givehy, the bare actiorsy can be found. In particular, setting
k= A we are giver A Ao ='a. Sincel i is a solution for all values df the action 5 A is known
for all values ofA.

Using equation[(2]8) we can obtain the desired relation betWgandS,. For this purpose we
evaluate the functional integral on the RHS[0f|2.8) by a saddle pointeiga Let the fluctuation
field be f(x) = fo(x) + h(x) wherefy is the stationary point of the action

Sol 101 = Snlo+ 1] — /ddxf<x>W—§ 01 ) (3.2)

Now, expandingSe: to second order ith and performing the Gaussian integral ohewe obtain



Bare vs. Effective Fixed Point Action in Asymptotic Safétye Reconstruction Problem Martin Reuter

the following relationship between the bare and the average action:

ar 1
N R e L
L [(FSe T e
+§TrAln[<T+ﬁk)M |+ (3.3)

Recalling that the stationary poifg has an expansion in powersfotoo, (3-B) yields, in a symbolic
notation,

Fenlo] — Shlo] /foc‘iqo Cien — S/\) 2/fo S(2 +%k>fo+ﬁ(f0)
+2TrA|n{[s<2 |+ S [g]fo+ S [(p]fofo+...+5£k]M’2}+ﬁ(ﬁz) (3.4)

Together with the expansion of the stationary point conditi®8,:/d f)[fo] = O the above equa-
tion is solved self-consistently ifo = 0+ ¢'(h) and M A[@] — Sa[@] = €(h), which leads to the
following 1-loop formula for the difference between the average anddhe #ction:

Menle] ~ Snlg] = 2Traln {[$21g] + M 2} (35)

Settingk = A we arrive at the final result

FAnlg]—Snlg] = 2Tialn{ [$2[g] + %2 M2} (3.6)
This is an equation to be solved f8. It tells us how the bare actio§, must depend o in
order to give rise to the prescrib&ég ». The relation[(3]6), and its obvious generalizations to more
complicated theories, is our main tool for (re)constructing the path integrabéiongs to a known
solution of the FRGE.

An important comment is in order here. Even though the parariveteas introduced in[(2.3)
only in order to make the measure dimensionless, it has a nontrivial impac soltition of [3]6)
for the bare actiorgy. Indeed, different choices &l can lead to quite different actions , but all
of them are physically equivalent. (Sde][27] for a detailed discussionthi$ sense, changing
M simply amounts to shifting the contributions from the measure into the bare actimmefdre
neither [ Zax nor exp(—S\) have a physical meaning separately, only the combination of them
has.

4. QEG and the Einstein-Hilbert truncation

The results derived above can be generalized to the case of QuantsteifEi@ravity [2}],
following the strategy for constructing the EAA as [ [6] and implementing an UMfE in ad-
dition. Indeed, we shall use the same notations and conventions @s in [@jtb the reader is
referred for further details.
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4.1 Thegravitational average action

The construction of the gravitational average actions starts out frotmayegral [ Zy,v exp(—yuv|)-
First we introduce a background metmg, (x), decompose the integration variable ps =
Ouv + huy, and gauge-fix the resulting path integral ovgy,. It is this integral that we make
well defined by introducing an UV cutoff into the measure along with an Ippsession ternd\S

analogous tq[(2]4):
/ Inh 74C 71C exp( ~&[h.C.C:g - tush.C.C:4)) 4.1)

HereCH andc?u are the Fadeev-Popov ghosts, and the total bare aSios, Sy + StA + Shas
which is allowed to depend ofy, includes the gauge fixing ter@y: o and the ghost actioGyn .
The UV cutoff is implemented by restricting the expansion to eigenfunctiongaidtariant Lapla-
cian D2 = QPVDHDV with eigenvaluesc smaller than a give\?. Hence the measure reads in

analogy with [2.8)
/ Iph=

and likewise for the ghosts. Hema,is a degeneracy index. The remaining steps in the construction
of the gravitational average action proceed exactly ag]in [6]. Note thaisrcémstruction the
background metrig),y (X) is crucial not only for the gauge fixing and the IR cutoff, but also for
implementing the UV cutoff.

The key properties of the functional thus defined are the exact FRGtaltntegro-differential
equation which it satisfies. The flow equation reads

/ Ay M~ (el 4.2)

/\2] m

Kadialh, €,&; = %sm [(r< 2 +%k) 1@@4 (4.3)

Here the Supertrace “STr" implies the extra minus sign in the ghost sectdactinthe cutoff

operaton%’;< and the HeSS|aﬁ<,)\ are matrices in the space of dynamical flelmlé andé. The

background covariant regularization of the measure entails the appearéthe restricted trace
STiA[---] = STr|8(A2+D?)[---] (4.4)

In parallel with Sectiorf]2, we denote the solutions of téree FRGE ast'k[ﬁ, ¢, E_ﬁj Ac-
cording to equation[(2.10) fdc= A, we get the corresponding relation:

Fanlh &, &3 =TalhE & q (4.5)

The integro-differential equation analogous|to](2.8) reads in QEG:

exp( ~ Mall.&.&:8]) = [ ZahZnCIACexp| - §in.C.C:q -

_ _ _ o
_AkS{h—h,C—E,C—E;sﬂ+/d"><(huv—huv)vk’A
Shy
6I’ 5I’
d u_ kA d kA
+/d x(oH— g S +/d 55#] (4.6)
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4.2 Thebareaction at oneloop

As in the scalar case above, we would like to use the information containedverasglution
r«h, &, &;q of the A-free FRGE in order to find out which-dependence must be given to the
(total) bare actiorS, if we want the path integral to possess a well defined It 0 and to
reproduce the prescribég. Using eq{(4]5) and (4.6) and restricting ourselves to the 1-loop level,
its derivation proceeds as in Sect@n 3, with the result

Panlh €63 = SR E &G +,STnin (32 + 7)€ £ (4.7)

Here ./ is a block diagonal normalization matrix, equalNtS and M? in the graviton and the
ghost sector, respectively.

4.3 Thetwofold Einstein-Hilbert truncation

Solving the above equation for the bare actfw[lﬁ,f,f;gj is difficult, even at the one-loop
level, since [4]7) is a complicated functional differential equation for thie hation. In practice
one has to restrict the space of actions wiigrandS, are defined by truncating them to a tractable
number of terms. The simplest possibility, which we analyze here, is givémeginstein-Hilbert
truncation for both the effective and the bare action. Adjin [6] we makertsata

Mdg.8.€.¢) = ~(16nG9* [a g (R(@) ~ 2k) + Snlo~ 6.8, &:4]
+(32nG,) / A3 (2P 0ap)(FE° 9p0) (4.8)
The third term on the RHS of e.(#.8) is the gauge fixing fecorresponding to the harmonic

coordinate condition, invoIvin@?ﬁ’B = 55@”"@,— 1g°PD,,, and the second term is the associated
ghost action. We make an analogous ansatz for the bare action:

$(0.6.¢.¢] = ~(167Gn) " [d'xy§(R(©) - 2 ) + Splg - 5.8.£:]

+(32né,\)*1/ddx 90" (75 9up) (5 Gpo) (4.9)

Eq.(4.8) contains the running dimensionful paramemrangjk. The corresponding bare Newton
and cosmological constant, respectively, are denGiedndA,.

Setting the ghost terms to zed— &T: 0, andg = g, the super trace has a derivative expansion
of the form

%STr,\In[(§§\2)+@,\)[O,O,O;g_pi/*l}:Bo/\d /ddx\/§+Bl/\d*2 /ddx GRQ)+  (4.10)

1We employ a non-dynamical gauge fixing parameter 1 here.
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with dimensionless coefficien® andB;, respectively. Ird = 4 and using the optimized cutoff
shape function they are given Hy[27]

1 < y

Bo= 5> [SIn(l— 2A7) —5In(Gp) +Qn (4.11a)

Bi= %BOJFABl (4.11b)
1 2

Qn =12In(A/M) + by (4.11d)

with the constanby = —5In(32m) — In2. Using (4.1D) in[(4]7) and equating the coefficients of the
independent invariants we obtain two equations relating the effective t@tkeghrameters:

1 —161By A972, An A = 81By A (4.12)
Ga Ga Ga Ga
In terms of the dimensionless quantities definedjpy=s A42Gp, gp = N3—2G,, and analogous
relations for the bare couplings, we get:

1 1

— — —=-161B 4.13a
oA Oa ! ( )
A A
o~ —8mB 4.13b
ogrn  Ona 0 ( )

The algebraic system of equatiofis (#.13) should allow us to detegniaed)v\ for givenga and
AA-

Unfortunately it is impossible to solve the systdm (#.13) analytically for the fham@meters.
However, in [2]7] we solved those equations numerically, and found adeéhed pair(g“j\) for
allg>0andA < 1/2, for a wide range of values of the const@nt 12Inc+bg?. Different values
of Q correspond to different normalizations of the measure.

Indeed, for an effective RG trajectory, the fixed point behaviok lig(gk, Ak) = (9, A.) is
mapped onto an analogous fixed point behavior at the bare level (afteving he explicitA
dependence from the map by settiig= cA). The image of the GFP is always gt = A =0,
while the coordinates of the “bare” NGF, andA., depend on the value . This behavior is
illustrated in Fig.2, where we present the result of applying the (gap) — (g,)\) for different
values ofQ, to a set of representative effective RG trajectories on the half gjlan®. However,
we emphasize that all choices@fare physically equivalent. Varying Q simply amounts to shifting
contributions back and forth between the action and the measure.

It is instructive to determine the linearized flow near the two "bare" fixedtp@ind to deter-
mine the corresponding critical exponents, if they can be defined.

2The map(g,A) — (g,}\) is explicitly A-dependent because of the param&gr= 12In(A/M) + bg. This A-
dependence can be removed by including appropriate factors of theutd¥f into the measure. If we sbt = cA with
an arbitraryc > 0 the quantityQ = 12Inc+ bg becomes @-independent constant. As a result, the nfig@ ) — (gJ\)
has no explicit dependence on any (UV or IR) cutoff.

10
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(b)

(d)

—0.4 -0.3 —-0.2 -0.1 0.0 0.1 0.2 0.3 A —0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 A

Figure 2: The diagram (a) show§ the phase portrait of the effective B@ din the(g, A )-plane. The other
diagrams are its image on tmé,/v\)-plane of bare parameters for three different value®ohamely (b)
Q=+1,(c)Q=—-0.1167 where\, =0, and (d)Q = —1, respectively.

Both the “effective” and the “bare” NGFP are inner points of the cqoesliing coupling
constant space. The flow in the vicinity of one is the diffeomorphic image of the riear the
other. The RG running of the respective scaling fields ls ® and0 A~9, respectively, with the
same critical exponents The “bare” GFP instead is located on the lgre 0, i.e. on the boundary
of the domain on which the map from the effective to the bare couplings isedefin its vicinity
(on the half plane wittlg > 0) the “bare” running is characterized by logarithmically corrected
power laws. The “effective” GFP, on the other hand, shows pureeptaw scaling. Near the GFP,
we can expand the relatior|s (4.13), obtaining, in leading order:

§=g-+0(g*A?) (4.14)

ia-9 (o RN
A=r- (Q-5ing) + —
These expansions are the first few terms of a power-log series. This snipdiethe bare running
indeed follows logarithmically corrected power laws.

[3— Q+5|ng] +O(, A2 (4.15)

5. Conformally Reduced Gravity

As another example of the strategy described above, we next analyiweroally reduced
gravity [24,[2F] in which only the conformal factor of the metric is quantiz&€te simplicity of
the model allows for the use of comparatively general truncations. We sdgltlhie method of the
Local Potential Approximation (LPA) to deduce the general form of thre pbatential contained in
the reconstructe8y of this model.

In conformally reduced gravity one considers only dynamical megi¢s= (ngw and back-
ground metricg,y = ngw which are conformal to a fixed reference metyjg,,"usually taken
to bedyy = dyv. The background metric is used in order to construct a coarse graipearator

11
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Zx[xs] which cuts off the spectrum of[J, the Laplace-Beltrami operator gf,y, at scale thé.

In this way Yk has the character of a proper length with respect to the background restatly

as in full QEG. Furthermore, we introduce a sharp UV cutoff by restridﬁleg—ﬁ eigenvalues to

be smaller tham\?. Following the same steps as in Sectfpn 2, one can construct a UV-regulated
functionalW A and with it the corresponding effective average acfiga. The reconstruction
formula is a slight generalization df (B.6):

TAAID.X6] —~ Sn0.x6] = 3 Tr[ 8N + D) in{ [$P 036+ AalxaIM 2] (5.1

Here,S2) (@, Xglxy = ———— % ___ g, x|, and the explicit form of the coarse graining op-
’ ’ Vokx)v/aly) 09)oely) THE A
erator reads R
3 2,200 O
—_ K2RO( — 2
HilXel = ~ e, Xe ( ngz) (5-2)

In order to solve[(5]1) we now make a local potential ansatz for both thet# and the bare
action:

3 1 ~

Feal@: Xs] = ~ AGen /d“x{ —5¢0e+ Fk,/\((Pa)(B)} (5.3)
3 1 -~ v

Sl xel =~ = /d4X{ — 5 PHe+ Fk,/\((PvXB)} (5.4)

Inserting [5.8) and[(5.4) intd (3.1) we get:

Fa(@.Xs) FV/\(‘I}XB)

I 1 4 a4 1 2.2 2
G AT In[GAAZ(/\ XB+0¢F,\(¢,XB))} (5.5)

We have derived the last equatiarthout setting ¢ = xg, that is,gyy = guy. Our motivation
is simply to keep separated terms which are purely background depdnalerihose which are
dynamical. The above truncations assume that the potentials have an exéngpligt dependence
on xg (in addition to the one implicit inp = xg + f wheref is the fluctuation average). Extended
truncations which have an explicit dependence on the background jnvestigated in this setting
in ref. [B9].

It is convenient for the analysis to rewrite the above equation in terms of diordass quan-
tities. We use

gAn=GaN2, ¢=Ap and b=Axg (5.6)
Ya(9,b) =A’FA(¢ /A b/N) (5.7)

and analogous relations for the bare quantities. The resulting equation is:

Y/\((p?b) _ Y\I/\(¢7b) - 1
an da 481

b* In [g}A(bzwg\?A(rp,b))} (5.8)

This equation strongly suggests that the bare pote‘ﬁ((di, b) may depend explicitly on the back-
ground field.
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Let us nonetheless start by exploring the= ¢" truncation which is analogous to tiog, =
guv-truncation used in QEG. Then €g.{5.8) reduces to

YA@) _YA(@) 1 41l p o
b= g agrd I g (97 (9))] (5.9)
According to ref[2b], the\-free effective potential exhibits the following NGFP on the infinite

dimensional space of thés (for the R* topology):

1A, 4
Y.(9)=— égfb (5.10a)
A~ 0279 g, ~4.650 (5.10D)

Therefore, one can insert this result on the LHS or{eq.(5.9) and swivled bare potentia{h(tp).
It can be demonstrated that this indeed has a solution which can be fooatically. Asymptoti-
cally (for ¢ — ) it behaves as

V(0)~ 2 pting o9 (5.11)

Remarkably, while this potential is of the familiar Coleman-Weinberg form, it ig lpart of the
bare action; it corresponds to a simpf¢t monomial in the effective one. Thus, as compared to a
standard scalar matter field theory, the situation is exactly inverted.

It is not difficult to understand how this comes about: The differdnce S, is given by a
trace Ti- - -] which is nothing but a differentiated one-loop determinant. As a consequenand
S, differ precisely by terms typical of a one loop effective action, and ttwdede the potential
term ¢*In¢. Hence ap* term inT", unavoidably amounts to a Coleman-Weinberg terrs,inat
leastwithin the truncation considered

In fact, returning now to the more general truncations with an eggrdependence &% (@, Xg)
it can be shown that actual, andrl", do not differ by a “dynamical” ternp*In ¢, nonanalytic in
the quantum field, but rather merely by its background anlatéigb. It also can be showrj [59] that
the bare potential is analytic i if the effective one is so. This example nicely demonstrates that
occasionally the oversimplifications caused by the clasbef$", or “g,y, = gy" truncations can
lead to a qualitatively wrong picture.

6. Discussion

Here we described some first steps towards solving the reconstruatibleipr for asymptot-
ically safe quantum field theories. In particular we showed explicitly thatr affecifying a UV
regularization scheme and a measure, every solution of the flow equatitiefeffective aver-
age action without an UV cutoff gives rise to a regularized path integral avtkell defined limit
N\ — oo, and to a UV cutoff dependent bare action.

While the method we developed is completely general, this work was motivated Bgymp-
totic Safety program in Quantum Einstein Gravity. As to yet the investigaticseshapon the EAA
focused on computing RG trajectories of thdree FRGE and establishing the existence of a non-
Gaussian fixed point. The present work aims at completing the Asymptotity$abgram in the
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sense of finding the, yet unknown, quantum system which we implicitly queahsigpicking a so-
lution of the flow equation. In fact, in our approach the primary definitionQEG” is in terms of

an RG trajectory of the EAA that emanates from the fixed point. The advamtiatis strategy,
defining the theory in terms of an effective rather than bare action, is thatdatmatically guaran-
tees an “asymptotically safe” high energy behavior. The disadvantagatimtbrder to complete
the Asymptotic Safety program, that is, to find the underlying microscopic yhegtra work is

needed.

Once we know the microscopic, i.e. bare action we can attempt a kind of idegéransfor-
mation” to find appropriate phase space variables, a microscopic Hamilt@médrihus a canon-
ical description of the bare theory. Only at this level we can identify theedsgof freedom
that got quantized, as well as their fundamental interactions. Since the Haamltis unlikely
to turn out quadratic in the momenta, the “Legendre tansformation” involved iz tander-
stood as a generalized, i.e. quantum mechanical one. In the simplest cassidts in refor-
mulating a given configuration space path integﬁ@d)exp(iS[CD]) as a phase space integral
J 2 [ 2Nexp(i [Md—H[M,®]). With other words, we must undo the integrating out of the
momenta.

However, given the complexity df. which most probably contains higher derivatives and
non-local terms a generalized, Ostrogradski-type phase space fonméliemerge presumably.

Being interested in a canonical description of the “bare” NGFP action onktmignder if
there exists an alternative formalism which deals directly with the RG flow of Hamdlts rather
than Lagrangians. It seems that there hardly can be a practicableaapmbthis kind which is
similar in spirit to the EAA. The reason is as follows.

If we apply a coarse graining step to an action which contains only, sstydérivatives of the
field, the result will contain higher derivatives in general. This posespeaial problem in a La-
grangian setting, but for the Hamiltonian formalism it implies that new momentum \esiaiust
be introduced. As a result, the coarse grained Hamiltonian “lives” on aerdiff phase space (in
the sense of Ostrogradski’'s method) than the original one. Therefiolegst in a straightforward
interpretation, there is no Hamiltonian analog of the flow on the space of acttonghis reason
there is probably no simple way of getting around the “reconstruction prdble

However, the above discussion does not contradict other appatiese the renormalization
procedure could be applied in a Hamiltonian descriptjon) [57] since thereddmse graining is
performed in space (rather than spacetime) only.

One should also emphasize that it is by no means clear from the outset wthatf Kunda-
mental degrees of freedom will be found in this Hamiltonian analysis. In ppraachthe only
nontrivial input is the theory spac¢éhe space of functionals on which the renormalization group
operates. Having fixed this space a FRGE can be written down, the redidtincan be computed,
its fixed point(s) . can be identified, and the associated asymptotically safe field theories can be
definedwithout any additional inputAs a consequence, the only statement about the degrees of
freedom in these theories which we can make on general grounds iseliatath be “carried” by
precisely those fields on whidh depends. (In the case at hand, theory space contains all function-
alsl'[g,g, &, &] which are invariant under diffeomorphisms.) Clearly, just knowing theerdfield
but not the action, herk,, tells us comparatively little about the degrees of freedom. The action
I, however, is gredictionof the theory, not an input. From this point of view it is quite nontrivial
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that QEG was found to have RG trajectories which indeed describe cleSsicaral Relativity on
macroscopic scales.

In this work we also investigated QEG in the Einstein-Hilbert truncation, coctiig a map
relating the effective to the bare Newton and cosmological constant, aadalgzed the properties
of the “bare” RG flow. We saw in particular that the “effective” NGFP map® a corresponding
“bare” one; in its vicinity the scaling fields show a power law running with theesaritical ex-
ponents as at the effective level. The situation is different for the GFREhwig a boundary point
of parameter space. The pure power laws of the “effective” flowivedegarithmic corrections
on the “bare” side. We also described the case of conformally reduesttygwithin an (infine
dimensional!) truncation of the LPA type. In this example we saw in particulainht@der to get
a qualitatively correct picture one must go beyond the clasg ef §"-truncations.

Leaving aside gravity, in future work it will be interesting to analyze for ins&also higher
dimensional Yang-Mills theory along the same lines. In fact, in[rdf.[32] tfexti¥e average action
of d-dimensional Yang-Mills theory was considered in a simﬁﬂEﬁv)z-truncation. According to
this truncatior, ', has a NGFP in the UV if & d < 24. Inspired by the structure of the one-
loop effective action in Yang-Mills theory one would expect that the “baunterpart of the
J(F2,)?fixed point should contain terms likg(F3,)?In(F2,)?, and also nonlocal ones such as
fFﬁVf(—DZ)FﬁV. For the following reason it is of some practical importance to find out winethe
this is actually the case in a sufficiently general, reliable truncation. It seemparatively easy
to perform Monte-Carlo simulations ith= 5, say, so that one could possibly get an independent
confirmation of the results obtained from the average action. Howevepyobéem is that a priori
we do not really know which bare theory should be simulated in order toeaat the lattice
version of the average action results. The present analysis suggasiis¥Yang-Mills theory is
asymptotically safe id = 5, the effective fixed point actioh, might be simple, bus, could
contain “exotic” nonlinear and nonlocal terms. If so, it is conceivable$has sufficiently different
from j’(F‘j"v)2 to belong to a new universality class. In this case a Monte-Carlo simulati@ubas
upon the conventional Wilson gauge field action might not find a NGFP, whsleatild show up
when a discretized version &f is used.

Completely analogous remarks apply to the nonlinear sigma modebi which, according
to the lowest order truncation of the EAA, is asymptotically safe fop [60].

A. Theinduced cosmological constant, and
what we can learn from it

In this appendix we illustrate how the bare and the average action are rbjatedans of a
simple example: the cosmological constant induced by a scalar matter fielizgdan a classical
gravitational background. The example also serves as a toy model to higgdigeral issues arising
in the complete formulation of QEG. For further details we refeftp [27]

We start with an action of a scalar field which is minimally coupled with the classiclane
guv- As we are interested only in the induced cosmological constant it will ieiguit to keep the

3For a generalization see aIs@[SS].
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j’ddx\/@ gravitational invariant in the bare and average action, respectively:
1 . .
S\x] = é/ddx\/g[gw(auxdvx+mZX2] +E /ddx\fg (A1)

Mealo] = % /ddx\/g[g“vduqoévtp+ ngoz] +Ci /ddx\/g (A.2)

The solution™[¢] of theA-free FRGE has a structure similar fo (A.2) involving a running parame-
terCyx. The t_hreeC-factors(f,\, Cia andCy are related to the corresponding cosmological constants
A by C = (A/8nG) where Newton’s constar® does not run in the approximation considered.
Furthermore, for the purposes of this demonstration, the running of theesiasalso neglected.

Notice that sinceS, is quadratic inx the functional integral[(2] 2) fonk A[J], appropriately
generalized to a curved background, can be solved exactly. With threted trace TK[-- -] =
Tr[6(A?+D?)(---)] one obtains

WA[J] = ;/ddx\/ﬁ\l [—D2+mz+%k(—D2)]*1J—é,\/ddx 0—
—%Tr/\ln K—D2+ﬁ12+%k(—D2)>M‘2] (A.3)

In this simple case we can complitg, directly from the very definition of the EAA, e.(2.5):

Menlg] = ;/ddx\@<g“"ﬁuqoﬁv(p+ g +(§/\/ddx\/g+
v %Tr/\ln [(— D2+ﬁ9+%k(—D2))M*2} (A.4)

The flow equation fof  A[¢] is a slight generalization of (2.6) with the flat metric replaced
by guv everywhere. In particular, the operaipt = —D? is now to be interpreted as the Laplace-
Beltrami operator constructed with the metgg,. Upon inserting[(A]2) the FRGE assumes the
form 1

KACin / d'x /g = 5Tr[B(A2+D?) # (~D?)~ ka\ai(—D?)] (A.5)

with 7 (p?) = p? + m? + %«(p?). To make eq[(A]5) consistent we may retain only the volume
term fddx\/g in the derivative expansion of the trace on its RHS. It is easily found l®yting
a flat metric. Using the optimized cutoff (A.5) it reduces to, wigh= [29F1n%/2r (d/2)] 71,

2
We observe that the RHS df (A.6) has becdndependent of the cutof.

Inserting the™y-ansatz (involvingZy) into theA-free flow equation we find ed.(A.6), too, this
time for Cy. HencekokCy = kdCy A for all k < A, and therefor&€, = C A for k < A if the same
initial conditions are imposed db andCy a.

If k> m, eq.[A§) yields the familiak?-running of the cosmological constant; it is this scale
dependence that would result from summing up the zero point energibe gmassless) field
modes. Ifk < mthe running is much weaker since the RHS[0f[A.6) contains a suppressitm f
(k/m)2 < 1. This is a typical decoupling phenomenon: In the regkwe mthe physical mass
is the active IR cutoff.
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The RG equatior{ (A]6) has the solution

Ck —C +2Vd kzd y%
A = Cren a YW

Here we fixed a specific RG trajectory by imposing the renormalization con@iogih . = Cren
with Aren = (81G)Cren the “renormalized cosmological constant”, to be determined experimentally
in principle. Form= 0 in particular, sinc€ = Cy A for k belowA,

Ci = Cicn = Cren+4d 2 vg K (A-8)

If d =4, say, in standard notation,

(A.7)

/\k = /\ren+ F];TZ GO k4 (A.9)
The scalar being massless, this running of the effective cosmologicstiariinas the same struc-
ture as in pure quantum gravity [6].
By performing a derivative expansion ofin[---] in (A.4) we can obtain the scalar’s con-
tribution to the induced cosmological constafit (g term), the induced Newton constarjt,(gR
term), and similarly to the higher derivative terms. Here we are interested icomological

constant only, and comparing (A.4) {o (A.2) yields

Cor-6s =3[ feng] o

J\/gterm
zl/ddp 6(A2 - p?) |n([p2+mz+,%>k(p2)]|vr2) (A.10)
2J) (2m)d '
Employing the optimized cutoff agair], (A]10) evaluates to
& g g (KEnP N a1y (YT
Cen =Cn+ S In (S +va [ ayy2 in (Y0 ) (A11)

Note that in [AIp) and[(A-]11) we replacedwith m since comparing the?-terms in [A}) and
(A-2), respectively, implies thah = mwithin the simple truncation used.

For m= 0 andd = 4, say, eq[(A.11) implies the following explicit result for the running
effective cosmological constant in terms of the bare one:

. 1
Cen =Cr+Vy [/\4|n(/\/|v|) —Z(/\“—k“)} (A.12)
For arbitraryd andm, the limitk — A of eq.(A.11) reads
< Nd g, (NP
Ch = C/\’/\ — T A% In ( M2 ) (A.l3)

This equation tells us how, for a given effective cosmological con§lgpnt the bare oneC,\, must
be adjusted in order to give rise to the prescribed effective one. The 8&Cx A in turn depends
on the RG trajectory chosen, i.e., in this simple situation, on the val@.@f In fact, from the
explicit solution [A.y) we get

vg (N, Yt

C/\,A = Cren+ —

d A.l4
d Jo yy—i—m2 ( )
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The above simple formulae illustrate various conceptual lessons of ¢isigrdicance. The
first lesson we illustrate with this model is the non-uniqueness of the bar@.aEtothe massless
casem= 0 in eq.[A.1B), the cosmological constant in the bare action is

Cr=Can—4d g A% In(A/M) (A.15)
while the one iy o andl"y atk = A reads
Can = Crent4d~2vg A9 = Gy (A.16)

Itis clear from here that choosing different values of the free paterivewill affect the bare cos-
mological constan{(A.15) but not the effective one, [eq.(A.16). 8ffectivecosmological constant
Cy_n will always be proportional té\“ for A — c and approacplusinfinity.

As a first choice considevl = const, i.e.M is a positive constant independent/ef Then,
according to[(A.7]5), thearecosmological constaid, is proportional to-A%InA for A > M and
it approachesninusinfinity in the limit A — oo,

As a second choice assuritkis proportional to the UV cutoffivi = cA, with some constant
¢ > 0. ThenCp = Cren+4d 2y4A4{1—dInc} diverges proportional t&d if ¢ + exp(1/d), and
depending on the value afit might approach- or 4. In the special case= exp(1/d) the
bare cosmological constaﬁl\ equalsCien for all A, i.e. it isfinite even in the limitA — oo, Also
c =1 is special: in this case, accidentally, the bare and the effective avactiga containthe
samecosmological constané,\ =Can.

Even though they can lead to dramatically different bare actions, the gactmices foM
are all physically equivalent. The ordinary effective action and the B#é\independent dfl.
ChangingM simply amounts to shifting contributions from the measure into the bare actioneor vic
versa.

This illustrates a general lesson which, while true everywhere in quangloirttieory, is par-
ticularly important in the asymptotic safety context: It makes no sense to talk abmare action
unless one has specified a measure before; ne#tgr nor exp—Sa] have a physical meaning
separately, only the combinatighZa x exp[—Sh] has. Here we illustrated this phenomenon by a
simple rescaling of the integration variable but clearly it extends to more glan@nsformations
of x whose Jacobian is interpreted as changing the a&ido a new oneS,\.

The concrete lesson for the asymptotic safety program is that one shmudckpect a fixed
point solution of the FRGH, ,, to correspond to a unique bare action.

Also, a natural question to ask is if there is a flow equation that governa-thependence
of the bare actions defined with our strategy. For the present toy moddilgothisquation can be

easily derived using (A.13):

(A.17)

poa= ()

This equation tells how the bare action must change whisrsent to infinity, given the requirement
that the parametéZ,_g in the ordinary effective action assumes the prescribed Ghue

Obviouslythe RG equation for the bare cosmological constant is quite different frootihe
responding equation at the level of the effective average aaiqfA.§).
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So, for constructing a path integral describing an asymptotically safeythveloy not use a full
fledged functional flow equation for the bare action? Why is the RG flovg @fucial for the QEG
program, whileSy plays only a secondary role? There are at least two answers to thesteqa:

The first answer is thathe property of asymptotic safety is decided about at the effective
rather than bare levelBy its very definition, asymptotic safety requires observable quantities such
as scattering cross sections to be free from divergences. SinSenth&ix elements are essentially
functional derivatives of = Nk this requires the ordinary effective action to be free from such
divergences. This is indeed the casé ifs connected to a UV fixed poirt, by a regular RG
trajectory. So, in order to test wether this condition is satisfied we need to thed -flow. The
concomitantSy-flow is of no direct physical relevance. In principle is is even coratgi that,
while 'y approaches to a fixed point in the UV, the bare action does not; the reshitiory could
nevertheless have completely acceptable physical properties.

For these reasons the basic tool in searching for asymptotic safety iswhedil@tion for the
EAA and not its analog for the bare action.

A second answer to the above question is that we would like the scale aepdadctional
obtained by solving the flow equation to have a chance of defining artieffdield theory in the
sense that its tree level evaluation at some scale approximately descrigeardlim effects with
this typical scale. Fofy this is indeed the cadebut not forSy. The reason is that, gives, there
is still a functional integration to be performed in order to go over to the @fetevel; usingl g
instead, it has been performed already.

The above toy model illustrates this point: From Eg)A.8) or@(A.Q) we cdedhat for
every finiteAen = (81G)Cren the running effectivecosmological constam = (811G)Cy becomes
large and positive for growingand finally approachgslusinfinity for k — . Applying the effec-
tive field theory interpretation we would insert thig into the effective Einstein equation. It then
predicts that, at high momentum scales, spacetime is strongly curved apdditagecurvature.

From the above remarks it is clear that th@ning bareaction does not contain this informa-
tion. Depending on our choice fo! the bare cosmological constabt approaches te-co,—co
or a finite value wheré\ — . So clearly it would not make any sense to insert it into Einstein’s
equation in order to “RG improve" it.
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