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1. Thenonlinear sigma model

A nonlinear sigma model (NLSM) is a theory whose configurations are maps ¢ from spacetime
to some internal manifold N. In most applications to particle physics N is a coset space G/H and
the theory is assumed to be globally invariant under the action of the group G. In contradistinction
to other scalar fields used in condensed matter and particle physics, such as the Higgs model and
its generalizations, the nonlinear sigma models are nonlinear already at the kinematical level, in
the sense that there is no linear structure on the configuration space: the sum of two fields is not
defined. This has deep consequences. If we limit ourselves to terms with two derivatives, we can
write the (Euclidean) action
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where we have chosen a coordinate system on N, and h,g is a metric on N L. A free field theory
is one for which the action is quadratic in the field. This would require that the components b,

are independent of ¢, i.e. that the metric is flat. But topology forbids the existence of a flat metric
on most manifolds. Therefore the absence of a linear structure generally implies that these theories
can not be free.

Since h,g are in general nonpolynomial functions of the fields, the fields themselves, as well
as hyp, have to be dimensionless, and consequently the constant ¢ has dimension length®2. If
N is a coset space and the action is G-invariant, a potential must necessarily be constant and can
be set to zero without loss of generality. Any term in the Lagrangian for such a theory must
contain derivatives of the fields, and (1.1) is the most general one containing two derivatives. The
ground states of the NLSM correspond to constant fields, and in the absence of a potential they
are completely degenerate. We will choose an arbitrary vacuum with coordinates ¢. Note that a
choice of vacuum breaks the global symmetry group G leaving a residual symmetry H. The fields
% are the resulting Goldstone bosons, and the NLSM is a theory of Goldstone bosons.

In general, the metric h, 5 can be seen as representing infinitely many coupling constants. To
make this manifest, suppose we apply perturbation theory to the NLSM. First, in order to give the
scalar fields their canonical dimension we absorb the constant ¢ in the fields, defining %= ¢%/g.
The dimension of ¢ is then Iength%. Now the action reads
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In order to separate the kinetic term from the interaction terms we expand the field around the
vacuum: % = @f+n%, and expand the metric in Taylor series in n:

_ _ _ 1 _
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where we write d, for 3%7. The coefficients of this expansion are now field-independent and rep-
resent the coupling constants of the theory. Note that there is in general an infinite number of
couplings and all couplings involve derivatives of the fields. The dimension of the coupling con-
stant in the m-th interaction term, i.e. the coefficient of dnadnn™, is Iength?(dfz). In spite of the

Lfor various ways of describing these models see ([1]) or ([2]).
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infinite number of couplings, this theory is renormalizable in a generalized sense for d=2 [3]. It is
power counting nonrenormalizable for d > 2. Therefore, the nonlinear sigma model is not a good
candidate for a fundamental theory in more than two dimensions.

The existence of symmetries greatly reduces the number of couplings. The action (1.1) is G-
invariant if the metric h,g is G-invariant, which means that there exist Killing vectors K, satisfying
the Lie algebra of G. For example, if N is topologically a semisimple Lie group G, and the metric
hgg is invariant under both left and right multiplications, then h, is unique up to an overall scale.
In this case G-invariance reduces the number of arbitrary coupling constants to just one, which can
be identified with g. In this case it is common to describe the NLSM in a different formalism:
choose a linear representation of G, and a basis {T,} in the Lie algebra such that the invariant inner
product is TrTaTp = dap. The element of the group with coordinates ¢*(x) corresponds to a matrix
U(x). Then the action (1.1) can be rewritten in the form

1 _ _
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This form exhibits most clearly the invariance under global left and right G transformations. Since
the field U = 1 is invariant under the diagonal subgroup AG = {(g,Q)}, the proper characterization
of the manifold N in this case is as the coset (G_ x Gr)/AG, where G and Gg denote the group G
acting on itself from left or right 2. For this reason, these are often called “chiral models”.

2. Chiral perturbation theory

The main application of the NLSM to particle physics is as a low energy phenomenolog-
ical approximation of QCD. In this case the field ¢ takes values in the manifold (SU(2) x
D (2)r)/A (2), and represents the direction chosen by the quark condensate. The three (pseudo)
scalar fields are identified with the pions, and they can be thought of as low energy fluctuations in
the condensate. The coupling g is equal to 1/ f;, where f, is the pion decay constant. This model
is an effective low energy description of strong interactions. A slightly more general, but less ac-
curate, model where SJ(2) is replaced by SJ(3), describes the dynamics of the octet of mesons,
including also the kaons and the 1. These models cease to give a good description of meson inter-
actions at an energy scale of the order of several hundred MeV’s. One can see this breakdown from
several viewpoints:

1. experimentally, it is the scale at which other strongly interacting particles appear, which are
not accounted for by the model,;

2. from the point of view of QCD it is the characteristic mass scale of the condensate, so that
there is no meaning in talking of the dynamics of the condensate above this scale;

3. from the point of view of the effective field theory itself, it is the scale at which perturbation
theory breaks down, as we shall discuss below.

ZNote that there is a subtle difference between the Lie group G and this coset: the former has a preferred element,
namely the identity, whereas the latter does not.



Gravity and sigma models Roberto Percacci

Besides pion physics, there is also another important application of the NLSM. If we use the
local isomorphisms SU (2) ~ SO(3) and U (2) x J(2) ~ SO(4) to identify N ~ SO(4)/SO(3) ~
S, we can identify this manifold with the orbit of the minima of the potential of the complex
Higgs doublet of the standard model. This NLSM can be viewed as a low energy effective theory
describing the dynamics of the electroweak Goldstone bosons, in the approximation in which the
mass of the Higgs particle is infinitely large [4]. Since the Higgs mass is proportional to the quartic
self coupling in the Higgs potential, this is often referred to as the strong coupling limit of the Higgs
model. When this NLSM it is coupled to U (2)._ x U (1) gauge fields, the Goldstone bosons give
mass to the W= and the Z, and in the unitary gauge nothing is left in the scalar sector. Thus, the
model can be viewed as describing a “Higgsless Higgs phenomenon”. In this case we can identify
g=1/v, where v = 246 GeV is the Higgs VEV. Above this scale the model is expected to break
down at least for the third of the reasons listed above. But unlike the case of strong interactions, the
corresponding energy scale has not yet been explored experimentally, so we don’t know whether
the other two reasons also hold.

There is a general formalism that can be used to extract physical consequences from these
effective field theories, going under the name of “chiral perturbation theory” or yPT for short [5].
The NLSM is treated as a quantum field theory with a UV cutoff at scale A. When one computes
loop effects with the action (1.1), divergences appear that are proportional to operators containing
more than two derivatives. In order to absorb such divergences it is necessary to assume that the
corresponding operators are present in the action. Therefore in the effective field theory one has to
allow all terms that are compatible with the symmetries of the system. Schematically, the action
can be organized in a derivative expansion

/d4x [G2(U~0U)2 4+ ga(U19U)* + go(U~1aU)e + .. ] . 2.1)

This expression is schematic because there can be several operators with the same number of
derivatives, but for our present purposes, they all behave in the same way. Chiral perturbation
theory systematically organizes the contributions of all these operators. When one studies a pro-
cess with a given number of external legs characterized by some external momenta of order p < A,
and one wants to calculate e.g. a cross section within a certain theoretical accuracy, one need to cal-
culate only a finite number of contributions, where terms with higher derivatives appear at the same
level as operators with fewer derivatives but in diagrams with higher loops. For example to cor-
rectly describe the experimentally measured pion scattering cross sections, one has to supplement
the action (1.1) by the four—derivative terms

/ d*X [gay TrU LU + gaa(Tr(U29U)2)?]

and these four derivative terms give contributions, at tree level, which are of the same order as those
of (1.4) at one loop. The couplings @, d41 and g4 have to be taken from experiment, but three
experiments suffice to determine them and one can actually do more than three experiments with
pions, in such a way that the theory retains some predictive power.

When one increases the accuracy, or the momentum, more and more contributions have to
be taken into account. Eventually when one wants to describe physics near the cutoff scale, all
operators give comparable contributions. The coefficients of infinitely many operators would then
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have to be determined by experiment and as a consequence this effective field theory description
would lose its predictive power.

3. Effective quantum field theory of Gravity

The historical role of Einstein’s theory is as a classical field theory of gravity, and in this role
it has been extraordinarily successful. Because all other interactions are described by quantum
theories, we would like to understand also gravity in quantum terms. This poses a number of
difficult challenges, both at technical and conceptual level. But in view of what was said in the
previous sections, we should recognize that a quantum description of gravity does not necessarily
have to be valid up to infinitely high energies. As a first step we could content ourselves with an
effective field theory description holding up to some cutoff scale [6]. In order to understand this
better, let us write the (Euclidean) Hilbert action:

1
_ m/ddx\/gg#VRM/lv. 3.1)

We note that, omitting indices, the Riemann tensor is schematically of the form dI' + I'T" and that
I' is of the form g~1dg, so that, aside from the metrics appearing explicitly in (3.1), the structure
of the Lagrangian is (g 1dg)?, exactly as in (1.4). As a matter of fact, one can easily see that
the metric g is a Goldstone boson (it has values in the coset GL(4)/0O(4)) so the similarity of the
Lagrangians is just a reflection of this deeper similarity at the kinematical level®,

Newton’s constant has exactly the same dimension as the coupling ¢ in (1.4), and therefore,
at the level of power counting, Einstein’s theory has the same quantum properties as the NLSM.
Of course power counting does not tell us whether the potential divergences do occur or not: for
this one has to do the actual calculations. These were done, and the nonrenormalizable divergences
were seen to appear at one loop in the presence of matter [7] and at two loops for pure gravity [8].
As in the NLSM, quantum loops formed with the Hilbert action will therefore generate infinitely
many higher derivative terms. Because of diffeomorphism invariance, the effective action will
have, somewhat schematically, the form

/ddx\/g 0o+ R+ Q4R+ QR+ ... 3.2)

where R™ has to be interpreted as a generic local, scalar operator containing 2m derivatives of
the metric (for example a scalar constructed by contracting the indices of m Riemann tensors),
and the couplings g have the same dimensions as the homologous couplings in (2.1). The main
difference between these expansions is the appearance of the @ (cosmological) term, which has
no analogue in the NLSM. We can apply to this theory the methods of yPT [6]. The leading term
will be the tree level contribution of the Hilbert action. This is just the classical result of Einstein’s
theory. The first correction will come from one loop terms calculated with the Hilbert action, cut
off at the Planck scale, or from the four derivative terms. At momentum scale p < 1/4/G these
corrections will be suppressed by powers of py/G and since the Planck scale is so much greater
than any accessible energy, these corrections are always extremely small, actually much smaller

3Similar statements hold also in the vierbein formulation and in more general formulations ([1]).
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than the homologous corrections in pion theory. From this point of view gravity could be regarded
as the best available example of an effective quantum field theory: every experimental success of
Einstein’s classical theory is automatically also a success for this effective quantum field theory of
gravity. We can therefore say that all we know about gravity is consistent with this picture. But
there is also a downside, and that is that all we know about gravity is also consistent with treating
it just as a classical field theory. At present there seems to be only one possible scenario when
guantum corrections could become directly testable at high energy accelerators, and this is if there
exist “large extra dimensions”, which would bring the effective Planck scale down to the TeV [9].

4. Asymptotic safety

By definition, effective field theories break down near their UV cutoff and have to be replaced
by another theory at higher energies. The paradigm of this transition is again the theory of strong
interactions. At high energies they are described by QCD, which is a weakly interacting theory.
Around the GeV scale the QCD interactions become strong, bound states form and at sufficiently
low energies their dynamics is described by the NLSM. The transition is not fully understood in
detail, but few doubt that this picture is basically correct. Clearly in this particular application there
is not much reason to try and extend the validity of the NLSM description beyond its natural cutoff.
But in sections 2 and 3 | also mentioned other two low energy effective field theories, for which
the relevant energy scale has not yet been explored. In the electroweak case we do not yet know
for sure that new states (whether fundamental particles or composites or resonances) will be found
at colliders, so we cannot (yet) invoke the first two reasons given in section 2 to claim that the
electroweak chiral model must break down at a scale of a few hundred GeV’s. Even less can be
said in the case of gravity. So in these cases it seems worth exploring the possibility that also the
third of the given reasons, which is the only one we can use from our low energy perspective, can
be circumvented. Namely, one may hope that as one approaches the putative cutoff A, the effective
field theory somehow manages to heal itself of its perturbative problems and could continue to
make sense also at higher scales, potentially up to infinite energy. Specifically this can happen if
the running couplings, expressed in suitable units, reach a Fixed Point (FP).

Let us illustrate this in the case of the NLSM action (1.1). As one sees from the expansion
(1.3), the effective n-point vertex is proportional to §" 2, where § = gpdz;2 is an effective dimen-
sionless coupling, which takes into account the classical momentum dependence of the interaction.
In perturbation theory § is essentially proportional to pdz;z, and if one tries to use this theory beyond
the cutoff scale, § becomes arbitrarily large. The way in which the theory could cure itself of this
problem is if the full renormalized g, including quantum corrections, depended on p in such a way
as to exactly compensate this “classical” p-dependence. More precisely, we say that the NLSM
with action (1.1) has a FP if g(p) ~ pZE—d in such a way that §(p) tends to a constant §..

More generally, assume that at a given scale k, physics is described by the tree level expan-
sion of a kind of “Wilsonian effective action” Ty which already contains the effect of loops, the
integration over the loop momenta having been extended down to the scale k. (For this reason we
will sometimes refer to the scale k as an “IR cutoff”.) We assume that the Ty has the most general
form allowed by the symmetries of the theory and that it can be parametrized as in (2.1) (or (3.2) in
the case of gravity), where g (k) are essential renormalized couplings. The word “essential” here
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refers to the fact that any couplings that can be eliminated by means of field redefinitions, such
as the wave function renormalization constants Z, do not affect physical observables and therefore
need not be considered for our argument. We define § = g;(k)k %, where d; is the canonical di-
mension of g. These dimensionless numbers are the essential couplings measured in units of k.
We say that the theory has a fixed point if all the § tend to finite limits &, when k — oo.

If such a FP exists, and the physical world is described by a RG trajectory that hits the FP when
k — oo, then all the renormalized couplings remain finite when measured in units of k, and the theory
has a sensible UV limit. The important question then is: how many such trajectories exist? This
question is important because if it turned out, for example, that all trajectories end at the FP, then
we would be in the same situation as with a nonrenormalizable theory: in order to determine what
trajectory the real world corresponds to, we would have to measure separately each of the infinitely
many couplings of the theory, and the theory itself would have little predictive power, if any at
all. At the other extreme, the best possible case would be if there existed a single such trajectory,
because then the demand of having a good UV limit would constrain all the couplings, up to one
parameter telling us the energy scale corresponding to a particular point on the trajectory. In order
to describe the general case, define the UV critical surface to be the set of points in parameter space
that is attracted to the FP in the UV limit. For the field theory description to be valid up to arbitrarily
high energy, the real world must correspond to a point in this surface. If the UV critical surface
is finite dimensional, then finitely many experiments are sufficient to determine our position in it.
Then, the theory is completely pinned down and we can use it to make predictions.

To summarize: a theory that has a FP with finitely many attractive directions has a sensible
UV limit and is predictive. Such a theory is called “asymptotically safe” [10]. QCD is the prime
example; in this case the FP corresponds to a free theory and one has the added bonus that pertur-
bation theory becomes better and better as energy increases. But it is clear that an asymptotically
safe theory would be perfectly sensible even if the FP was not free. In this case perturbation theory
may be of limited use (if the FP is not too far away from the free theory FP) or of no use (if the FP
corresponds to a strongly interacting theory).

5. Simple calculations

The nonlinear sigma models and gravity have very similar perturbative behaviour. Do these
theories have a FP with the properties that are needed for asymptotic safety in d = 4? Various
approximation schemes have been applied, and together they provide support for this hypothesis.
One approach that has been pursued is to truncate the effective action Iy, i.e. keeping only a finite
number of terms in the expansions (2.1) or (3.2), and to gradually increase the number of term. For
historical reasons, more work has been done on gravity than on the NLSM, so that the evidence
for asymptotic safety is now stronger for the former than for the latter. Here I will mention only
the evidence that is presently available for both theories, which amounts to truncating the effective
action to the lowest terms, those at most quadratic in derivatives. | refer to [11] for more detailed
reviews and references.

As mentioned in the preceding section, we must first make sure that the action is parametrized
just by essential couplings, i.e. that one cannot eliminate them by field redefinitions. Here the
difference between the two theories manifests itself. In the case of the NLSM, if we try to absorb
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the coupling 1/¢? by a redefinition of the field, as in (1.2), then g reappears in the internal metric
hegp, as in the expansion (1.3). Thus g is clearly an essential coupling. On the other hand, as we
have already mentioned, in the case of the Hilbert action (3.1) the field (in this case the metric)
also appears in the volume element and in the contraction of indices. As a consequence the effect
of rescaling the field is quite different and Newton’s constant can be completely absorbed by the
redefinition g, — 16w Gg, (the Ricci tensor is not affected by this redefinition). The reason why
G can still be considered an essential coupling is that, uniquely among field theories, a rescaling
of the metric also affects the definition of the cutoff and if we decide to use the cutoff as the unit
of energy, as was implicit in our preceding discussion, then such a rescaling is not allowed [12].
So it is true also in gravity, when parametrized by the Hilbert action and using cutoff units, that
Newton’s constant is an essential coupling.

The tool that has been used in the last ten years or so to calculate the beta functions of these
nonlinear theories is a form of Exact Functional Renormalization Group Equation (FRGE) intro-
duced by Wetterich [13]. This is a very powerful and versatile tool, which by now has been applied
to a large variety of problems [14], but since it is not yet very widely known, there may be the
impression that in order to see the appearance of a FP in gravity one has to resort to somewhat
esoteric methods. But this is not so: one can see the FP already in the lowest order of perturbation
theory. Both in gravity and in the NLSM, restricting ourselves to the terms with two derivatives,
the coefficient g that multiplies the action has dimension of mass®—2. Therefore the leading term
in the beta function is expected to be of the form

% =B1k? 2, (5.1)
where By is a calculable numerical coefficient. (In a direct calculation of the effective action, this
beta function would show up as a power law divergence.) The (square of the) perturbative coupling
constant is proportional to the inverse of @: g = 1/2g,. Therefore its beta function is of the form

2
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and the beta function of the dimensionless coupling & = g?k?-2 is

el 0 ~
k— = (d —2)§* — 2B, §" . (5.2)
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A nontrivial, UV attractive fixed point will exist provided B, > 0. This then is the basic mechanism
for the appearance of a FP. Of course, since the FP may correspond to a relatively large value of
the coupling, one cannot in general give too much weight to this perturbative result. It is for
this reason that one has to resort to a more powerful method such as the FRGE. In practice, the
actual calculation based on the FRGE is somewhat similar to the one loop calculation, but the
approximation upon which it is based does not rely on the coupling being small. This makes it an
ideal tool to explore the notion of asymptotic safety.
There is a way of approximating the truncated FRGE that will reproduce exactly the one loop
result: it consists in neglecting the running of the couplings in the r.h.s. of the equation. When this
is applied to the NLSM or to gravity, one gets (5.2). The truncated FRGE without this one loop
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approximation yields a result of the form:

dg® 2
e (d-2)§

_ 2B
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(5.3)

where By is another calculable numerical coefficient. Further improvements in the applications
of the FRGE consist not in adding higher loops formed with the two derivative operator, but in
adding the contributions of higher derivative operators. One should not expect these additional
contributions to be numerically small. However one may hope that at least the results for the FP-
values and the critical exponents of the lower order operators are not dramatically shifted by the
addition of the new operators. For some evidence that in gravity this is indeed the case, | refer to
the talk by C. Rahmede.

5.1 Nonlinear sigma model

Let me now give some explicit results, starting from the NLSM. The application of the FRGE
makes use of background field techniques developed in [15]. Here we follow [16]. Having chosen
a (not necessarily constant) background ¢, for each x one can find a unique vector £(x) tangent
to @(x) such that ¢(x) is the point on the geodesic passing through ¢(x) and tangent to & (x), the
distance from ¢(x) being equal to |£(x)|. One should think of & as an element of the space of
smooth sections C*(¢*TN), and we write ¢(x) = Expg(x & (x), where Exp is the exponential map.
The action for ¢ can be rewritten as S(¢) = (¢, &). The second variation of the action yields
an operator A acting on & by A(E)* = —D?E% — 9,079 @PR* 558, where Dy E* = 9,E% +
'L ﬁéﬁ is the covariant derivative constructed with the Christoffel symbols of h,5, and Iim,ﬁg
its Riemann tensor. The bar indicates that everything is to be evaluated at the background field. One

can check explicitly using the transformation properties

aé)/a

. fou 99700 067, 09" 0%

o
6 AV = a([_)’l a(bp aélvn ot aép a([_)’)“a([_)’v (54)
that the covariant derivative transforms in the same way as & under diffeomorphisms of N. One

defines an IR cutoff by adding to the bare action a nonlocal term of the form
_ 1 -
AS(.8) = 55 [ d'xhupE"RU-DYE 9

for a suitable profile function R(z) which goes to zero sufficiently fast for z > k, and to k for z— 0.
The beta function of gizhaﬁ is then given by the FRGE as a trace of a certain function of the operator
—D?. Atone loop one finds in general that it is proportional to the Ricci tensor [16].

If there are any symmetries, the flow will preserve them. To see this, let g be an element of the
symmetry group G and Lg the diffeomorphism of N corresponding to g. Since h, is G-invariant,
also its connection is, so Ly maps the geodesic through y tangent to & to the geodesic through Lg(y)
tangent to TLg(&) [17]: Lg(Expy(&)) = EXpLy(y)(TLg(&)). We call ¢’ = Lgo ¢ the transform of ¢
under gand &' = TLg(&) the transform of & under g. Then ¢ = Lg(EXpS) = EXpLy(5)(TLgE) =
Expg&'. There follows that

é((blvél) :S((pl) :S((p) :é(q_)ug)v (5.6)
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Figure 1. The one loop beta function (upper curve) and the beta functions extracted from the truncated
FRGE (lower curve) for the case N = S°, which corresponds to the chiral model of pions or electroweak
bosons. Chiral perturbation theory applies near the origin.

i.e. the background field action Sis G-invariant provided both background and quantum field are
transformed. Furthermore, we have —D'2(&') = TLg(—D?(€)) or abstractly —D”? = TLgo (—D?)o
TLal_. There follows that if £ is an eigenvector of —D? with eigerrvalue A, then &’ is an eigenvector
of —D'? with the same eigenvalue. Therefore the spectrum of —D? is G invariant. The FRGE gives
the scale variation of Ti(¢) as a sum over eigenvalues of —D?, so it follows from the argument
above that aT'(¢) is G-invariant. This implies that if the starting action Ty, (¢) is G-invariant, also
the action at any other K is.

Now assume that N is a D-dimensional maximally symmetric space, which implies that R,,55 =
%(haﬁ hys —hayhgs), where Ris the curvature scalar. Modulo trivial redefinitions, we can assume
that h, is normalized so that |R| = D(D — 1) 4 and the only running coupling is g. One then finds

1

R .
Dd+2) ' @~ (4m)9/2r (§+1) &7)

R
B1 = Capy s B2 =2¢4
A FP will exist if R > 0. If we neglect B, this reproduces old one loop results of [3, 18] for
d=2+e¢. If d > 2 there is a nontrivial FP at @ = m For large R (which in the case of the
sphere means large D) it occurs at small coupling, where perturbation theory is reliable. The one

loop critical exponent is —@ =d —2. Since By > 0, its effect is to shift the FP to smaller value

= W and to produce a negative pole in the beta function at ¢ = —1/B,. This pole should
be of no consequence, since we imagine the theory to evolve from the nontrivial FP in the UV to
the free FP in the IR (where ¥PT applies). The other effect of B, is to make the beta function at the
FP steeper, changing the critical exponent to — g = Zdéi_zz). In d = 4, this gives the mass critical
exponent v = 3/8. Figure 1 gives the beta functlon of the S—-model ind = 4.

5.2 Gravity

Let us now come to gravity in d dimensions [19]. In this case one has to take into account the

4if R> 0 this corresponds to a sphere of unit radius; the case R= 0 is obviously of no interest.

10



Gravity and sigma models Roberto Percacci

B

05+

1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1
0.5 1.0 15 2.0 G

-05r

Figure 2: The gravitational one loop beta function (upper curve) and the beta function extracted from the
truncated FRGE (lower curve).

complications that follow from the presence of a gauge group. We assume that the theory has been
gauge fixed in the de Donder gauge, with gauge parameter ¢ = 1. Also, one has to make some
specific choice for the way in which the cutoff is imposed. We choose a cutoff of type la, in the
language of [20]. The beta function gets contributions from gravitons and from the ghosts. It is
given by equations (5.3), with

4(d® — 1502 4 12d — 48) B, — 4(d? —9d + 14)
3(4m)d2dr(d) 27 3(amd2(d+2)r(9)

1=

and the identification, ¢ = —87G. Due to this minus sign, the FP now exists for B, < 0, which is
indeed the case for all d. In particular at one loop for d = 4 we find B = —11/3x. It is interesting
that this FRGE-based calculation agrees qualitatively with a one loop calculation in [21] who give
the following formula for the scale-dependence of Newton’s constant:

167 Gy
30mr2 |’

Here r is the distance between two gravitating point particles. If we identify k =1/ar, with a a

constant of order one, this would correspond to a beta function

167
157
The difference in the numerical coefficient highlights that the position of the FP is not universal.
Rather, in these calculations, it depends on details of how the cutoff is imposed, which are akin to
renormalization scheme dependence in perturbation theory.

Due to the minus sign in the relation between ¢f and G, and given that B, < 0 for 2 < d < 6,
the effect of the correction term in the denominator is again to produce a negative pole in the beta
function at finite G > é*, but the effect on the FP is rather modest, as seen in figure 2.

G(r) =Gy [1

s =26-a?—G?. (5.8)

5.3 Other truncations

In order to emphasize the similarity with the NLSM, we have discussed here only the Hilbert
action. But gravity differs from the NLSM in that there can be a term in the action that does
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not contain derivatives of the field, namely the cosmological term. From the point of view of
renormalization theory this term is “more relevant” than the Hilbert term. In the presence of the
cosmological constant, B; and B, become polynomials in A = A/k?. The vacuum energy density
A/(8nG) depends quartically on k, and the beta function of A itself has the general form

d]\ ~ Al—{-ZBl[N\—i- é(Ale —AzBl)

— =-2A+G <
dt * 2(11 B,G)

where A; and A, are also polynomials in A. The coupled system of beta functions has a FP at
positive values of G and A, and since the critical exponents form a complex conjugate pair, the
trajectories approach the FP with a spiralling motion. | refer to [20] for more details.

The similarity between the NLSM and gravity extends also to the case when four derivative
terms are taken into account. In d = 4 at one loop, in both theories the coefficients g of equations
(2.1) and (3.2) grow logarithmically, so that their inverses, which are the couplings in a perturbative
axpansion, are asymptotically free. This was shown in a series of papers for gravity [22] and in [23]
for the NLSM. However, in these papers essential use is made of dimensional regularization, in such
a way that information about power-law divergences, and the corresponding running couplings, is
lost. In the case of gravity, the behaviour of the relevant couplings (the cosmological constant
and Newton’s constant) in these one loop renormalizable and asymptotically free theories has been
analyzed using the FRGE at one loop in [24] and it was found that they tend to a nontrivial FP that
is not too far from the one that one finds in the Einstein—Hilbert truncation. More recently it has
been shown that when one uses the FRGE beyond the one loop approximation, also the couplings
04 tend to finite limits, so that in a four derivative truncation gravity is asymptotically safe but not
asymptotically free, contrary to the one loop results [25]. Similar calculations for the NLSM are in
progress. In the case of gravity it has also been possible to study higher truncations, provided one
restricts one’s attention to powers of the curvature scalar R [26, 20]. In the case of the NLSM, this
would be analogous to studying actions that contain only powers of Tr(U~1dU)2. In a somewnhat
different line, the gravitational RG flow has also been studied in the approximation where only
the conformal degree of freedom is retained, yielding various interesting results [27]. Finally we
mention that a gravitational FP has been found also using the & expansion around d = 2 [28] and
the 1/N expansion [29]; this is again entirely analogous to well known results for the NLSM [18].

6. Outlook

Einstein’s theory and the NLSM have much in common. At low energies they can be treated
perturbatively as effective field theories, and | have argued that both gravity and certain NLSMs
may be asymptotically safe. If this was the case, then the range of validity of both theories could
extend beyond their natural cutoff scale, in principle up to arbitrarily high energy scales.

In general one would expect that the effective action at the FP T, has a very complicated
structure, with infinitely many nonzero couplings. Still, the theory could make definite predictions.
For example, suppose the critical surface has dimension d and is not parallel to any of the axes. We
can choose the first d couplings g, ...gq as independent variables, and express the remaining ones
as functions of these:

Ok = 0k(01,...04); fork=d+1,d+2,...
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In practice by solving the linearized flow equations one can determine the tangent space to the
critical surface at the FP:

d

Ok =0+ 2.Ci(g— i) ; fork=d+1.d+2,... (6.1)
i=1

For an example of an explicit calculation of this type in a nine-parameter approximation to the

gravitational effective action, | refer again to the contribution by C. Rahmede. These equations

are predictions for the behaviour of the theory at high energy, that in principle could be tested: one

would have to determine the first d couplings by means of d independent measurements, and subse-

quent experiments can determine whether, for example, the coupling gy satisfies the prediction.

Is it reasonable to expect that at the FP only finitely many directions are UV attractive? In a
local quantum field theory there is only a finite number of relevant operators, whose corresponding
couplings have positive mass dimension. Assuming that the quantum corrections are finite, at
most a finite number of couplings could switch from relevance to irrelevance or vice-versa. This
expectation is supported by the calculations referred to previously.

Let us now mention possible phenomenological applications of this scenario. There is not
much motivation to try to push the pion NLSM beyond its natural cutoff: we know that at high en-
ergies the pions cannot be treated as fundamental particles. Within yPT itself, as one goes towards
higher energies, one would have to take into account the heavier mesons, and that would change
its character drastically. For example, the interpretation of the ¢ meson is as the radial compo-
nent of a scalar multiplet, and that turns the nonlinear theory into a linear one. The situation is
much less clear in the electroweak version of ¥ PT, where the pions are replaced by the electroweak
Goldstone bosons (three of the degrees of freedom of the complex Higgs doublet), and the pion
decay constant is replaced by the VEV v = 246 GeV. The existence of these Goldstone degrees of
freedom has already been established: they correspond to the longitudinal components of the W
and Z particles. The general expectation is that a fourth scalar degree of freedom will be found;
according to the standard model, it is a fundamental scalar field. There is no compelling argument
against this picture, but in principle there is also the possibility that no new degrees of freedom will
be found at colliders beyond those that we already know. If this was the case up to sufficiently high
energy scales, then this could be a signal of an asymptotically safe NLSM.

While there is no shortage of models for physics beyond the TeV scale, all containing the
standard model in the appropriate limit, there is no quantum field theory valid at and beyond the
Planck scale which likewise subsumes the standard model plus Einstein’s theory of gravity. There
is therefore a much stronger motivation for studying asymptotic safety in the case gravity. From
this point of view one could still see studies of the NLSM as theoretical exercises where some of
the complications of gravity, e.g. those related to the gauge structure, are absent.

What would one observe if gravity was asymptotically safe? There have been some studies
of the phenomenological signatures of asymptotic safety in gravity [30]. They have considered
mosty the case of large extra dimensions, where the Planck scale is lowered so much that it might
be accessible to future collider experiments. However the same arguments hold also in the four
dimensional case, just scaling the Planck mass back to its "normal™ value. It seems more likely
that the effects of asymptotic safety could be detected in early cosmology or in some extreme
astrophysical setting. For some work alomg these lines | refer to the talk by A. Bonanno.
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One advantage of the asymptotic safety scenario is that the FP regime could be the continuation
towards higher energies of the low energy theory that we are already familiar with, without having
to change the field content. Although this is not the only possibility, there could be a smooth
transition from the low energy regime, where all the dimensionful couplings are constant, and yPT
applies, to the fixed point regime, where all the dimensionless couplings are constant. In the case of
gravity, this would guarantee, by construction, that the UV theory near the FP corresponds exactly
to gravity at low energy, a fact that is not at all obvious in other, "top down" approaches to quantum
gravity. In this connection we should also mention that the asymptotic safety scenario need not
exclude other "top down" descriptions of quantum gravity. In order to make contact with reality,
any such theory must first yield a low energy effective field theory, and this field theory must match
at low energies the y PT we know. So, another use of predictions such as (6.1) is to check agreement
with the top down approaches directly at high energy, near the FP regime. If some sort of agreement
could be established, then we would have much more confidence in both pictures. Conversely, we
observe that the top down approaches are typically based on a choice of "classical” action, which
cannot be directly identified with the FP effective average action I;.. The task of reconstructing the
bare action at some UV cutoff scale A from the effective average action Iy (in the limit A — )
has been discussed in [31].

Note added. The beta functions of a NLSM with four derivative interactions have been studied at
one loop in [32].
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